Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

Watching The Body's Metabolism Using Ultra Low Field MRI

Aligning the spins of carbon nuclei before injecting them into the body, makes MRI imaging that much easier.

  • November 11, 2009

One of the major problems with magnetic resonance imaging machines is the huge magnetic fields required to make them work and the giant superconducting magnets that generate them. These magnets usually have a field strength of around 1.5 Tesla although some designs can reach 9 T or more. That makes them expensive. So expensive, in fact, that the cost of rest of the machine is chickenfeed in comparison.

So in recent years, various groups have looked at creating images with ultra low fields of just a few tens of microteslas.

Normally, the huge magnetic field is necessary to make protons in water molecules inside the body line up. Zapping these protons with radio waves knocks them out of kilter and as they realign themselves, the protons emit radio waves that can be used to construct an image.

Ultra low field MRI gets around the need for huge magnets by using a new generation of superconducting quantum interference devices or SQUIDS to pick up the signals used to reconstruct an image.

Now Vadim Zotev and buddies at the Los Alamos National Laboratories in New Mexico have another trick up their sleeve. One of the many astounding things that magnetic resonance imaging can do is track the changing presence of carbon-13 in the body. That’s important because it shows the body’s metabolism in action so researchers can see how diseases such as cancer and diabetes change the way it functions.

Here’s the trick. Instead of using a magnetic field to align the carbon-13 nuclei inside the body, they use a technique called dynamic nuclear polarisation to align the carbon nuclei before they are injected into the body.

That should make ultra low field MRI images of metabolism in action even easier to make and paves the way for real time videos of the metabolism at work using this kind of technique

Ref: arxiv.org/abs/0911.1137: Toward Microtesla MRI of Hyperpolarized Carbon-13 for Real-Time Metabolic Imaging

Cut off? Read unlimited articles today.

Become an Insider
Already an Insider? Log in.
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.