Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Rewriting Life

Sequencing Tumors to Target Treatment

The mutations that trigger cancer progression suggest that a shift is needed in drug development.

Scientists have sequenced the genomes of two tumors from the same breast cancer patient–a primary tumor and a metastatic tumor that occurred nine years later–illuminating some of the genetic changes that trigger the progression of cancer. The initial findings suggest that both primary cancers and the process of metastasis–the spread of cancer cells–are more complicated and more variable than expected, which means that successful cancer treatment might ultimately require a combination of drugs targeted to different mutations.

Cancer sequence: Scientists have identified genetic mutations in the tumor tissue of a breast cancer patient, shown here.

The project is also a testament to how easy it has become to sequence a human genome. The researchers, from the British Columbia Cancer Agency, in Vancouver, now plan to sequence the tumor genomes of more than 250 additional patients over the next year. “We are sequencing dozens of tumors a week now,” says Samuel Aparicio, the scientist who led the study. Oncologists hope eventually to be able to profile every patient’s tumor this way, using the results to tailor treatment. Scientists sequenced a tumor for the first time last year–the current study is the first to compare the sequencing of two types of tumors.

Cancer develops when a number of mutations accumulate in a cell, disrupting the cell’s normal protective mechanisms and causing it to divide uncontrollably. Scientists have identified a number of genes involved in this process, such as BRCA1 and BRCA2, that predispose women to developing breast cancer. Some drugs, such as herceptin, specifically target molecular differences in cancer cells. But a broader understanding of the genetic triggers that enable both cancer development and metastasis would aid the development of new treatments. For example, women with triple-negative breast cancer, an aggressive subtype of cancer that often strikes younger women, tend to be resistant to existing drugs.

Using sequencing technology from San Diego-based Illumina, Aparicio and colleagues sequenced the genome of metastatic tissue from a breast cancer patient 43 times–to make sure that the sequence was accurate and that it covered every part of the genome–allowing them to identify the rare spots where the tumor genome differed from the patient’s normal genome. By comparing the genome sequence in noncancerous and metastatic tissue, scientists found 32 protein-altering mutations unique to the secondary tumor. “This paper is a remarkable tour de force in how thoroughly they examined this tumor,” says Leif Ellisen, a physician and scientist at Massachusetts General Hospital, in Boston, who was not involved in the study. The research was published today in the journal Nature.

The number of mutations in cancerous tissue was greater than some scientists had expected, making it challenging to determine which mutations enhance a cancer’s ability to spread, and which are the so-called “carrier mutations” that have no effect. “Many metastatic mutations occur in the patient as the tumor evolves into a more aggressive form,” says Arul Chinnaiyan, director of the Michigan Center for Translational Pathology, in Ann Arbor, who was not involved in the study. “In order to find mutations that trigger the formation of cancer from a benign cell, it will be important to focus on the sequence of early forms of the tumor rather than metastatic tumors.”

One of the major questions in cancer metastasis is whether tumors start out with the ability to spread, or they evolve that capacity over time. So the researchers looked for mutations found in both the metastatic tissue and in the primary tumor, to try to understand what made it eventually spread. Nineteen of the metastatic mutations were completely absent from the primary tumor, suggesting that they arose after the cancer spread. And six mutations appeared to be present in only a subset of the cells in the primary tumor, suggesting that the cells carrying these mutations may have been selected for as the cancer progressed, eclipsing other cells.

That suggests that even low-grade and medium-grade tumors can be genetically heterogeneous, which could be problematic for molecularly targeted drugs. “We think this points to the need to shift the way we develop and apply cancer treatments–we need to think about multiple mutations from the outset,” says Aparicio. “We are going to end up with recurrence of cancers unless we address the fact that there are cells that do not respond to the drug.”

Some diseases, such as malaria and HIV, have already been shown to require this strategy. “You need to use a cocktail of three different drugs, which target different bits of the pathology,” says Aparicio. “If you only have one or two, eventually you end up with resistance to the drugs. This may be going on in cancer as well, so we have to adapt our strategies accordingly.”

In the primary tumor, the researchers identified some proteins thought to play a role in cancer, such as PALB2, which is known to interact with the breast cancer risk factor BRCA2, as well as new mutations such as HAUS3, which plays a role in cell division.

The study also suggests that the mutations underlying different women’s cancers appear to be highly variable. Genetically screening other breast tumor tissue samples revealed that none shared the exact mutations identified in the original patient, although some samples contained mutations in the same gene. “A number of mutations were present in less than 1 percent frequency, so we need to look quite hard to find them,” says Aparicio.

The researchers are now sequencing tumors from women with triple-negative breast cancers in hope of identifying mutations that would suggest new drug targets for these cancers. They are also sequencing tumors of women in a clinical trial for an experimental cancer drug, in order to identify genetic markers that predict who will respond best to the drug.

The latest Insider Conversation is live! Listen to the story behind the story.

Subscribe today
Already a Premium subscriber? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look: exclusive early access to important stories, before they’re available to anyone else

    Insider Conversations: listen in on in-depth calls between our editors and today’s thought leaders

  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.