Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

A New Graphical Representation of the Periodic Table

But is the latest redrawing of Mendeleev’s masterpiece an improvement?

  • October 6, 2009

The periodic table has been stamped into the minds of countless generations of schoolchildren. Immediately recognised and universally adopted, it has long since achieved iconic status.

So why change it? According to Mohd Abubakr from Microsoft Research in Hyderabad, the table can be improved by arranging it in circular form. He says this gives a sense of the relative size of atoms–the closer to the centre, the smaller they are–something that is missing from the current form of the table. It preserves the periods and groups that make Mendeleev’s table so useful. And by placing hydrogen and helium near the centre, Abubakr says this solves the problem of whether to put hydrogen with the halogens or alkali metals and of whether to put helium in the 2nd group or with the inert gases.

That’s worthy but flawed. Unfortunately, Abubakr’s arrangement means that the table can only be read by rotating it. That’s tricky with a textbook and impossible with most computer screens.

The great utility of Mendeleev’s arrangements was its predictive power: the gaps in his table allowed him to predict the properties of undiscovered elements. It’s worth preserving in its current form for that reason alone.

However, there’s another relatively new way of arranging the elements developed by Maurice Kibler at Institut de Physique Nucleaire de Lyon in France that may have new predictive power.

Kibler says the symmetries of the periodic table can be captured by a group theory, specifically the composition of the special orthogonal group in 4 + 2 dimensions with the special unitary group of degree 2 (ie SO (4,2) x SU(2)).

That gives a layout as follows:

Kibler’s approach is akin to the way particle physicists classify particles by their symmetry properties such as flavor and color. That has been hugely useful in predicting the existence of new particles. Can the power of this group theoretical approach have the same impact on chemistry?

The problem for Kibler (and anybody else attempting to redraw the table of elements) is that we seem to have already found all the stable elements and predicted the existence of other superheavy ones. The question is whether Kibler’s approach has any predictive power beyond that. Maybe but the jury (and Kibler himself) is still out on this one.

Refs:

arxiv.org/abs/0910.0273: An Alternate Graphical Representation of Periodic table of Chemical Elements

arxiv.org/abs/quant-ph/0408104: On a Group-Theoretical Approach to the Periodic Table of Chemical Elements

AI is here. Will you lead or follow? Countdown to EmTech Digital 2019 has begun.

Register now
Want more award-winning journalism? Subscribe to MIT Technology Review.
  • Print + All Access Digital {! insider.prices.print_digital !}* Best Value

    {! insider.display.menuOptionsLabel !}

    The best of MIT Technology Review in print and online, plus unlimited access to our online archive, an ad-free web experience, discounts to MIT Technology Review events, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    6 bi-monthly issues of print + digital magazine

    10% discount to MIT Technology Review events

    Access to entire PDF magazine archive dating back to 1899

    Ad-free website experience

    The Download: newsletter delivery each weekday to your inbox

    The MIT Technology Review App

  • All Access Digital {! insider.prices.digital !}*

    {! insider.display.menuOptionsLabel !}

    The digital magazine, plus unlimited site access, our online archive, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    Digital magazine (6 bi-monthly issues)

    Access to entire PDF magazine archive dating back to 1899

    The Download: newsletter delivery each weekday to your inbox

  • Print Subscription {! insider.prices.print_only !}*

    {! insider.display.menuOptionsLabel !}

    Six print issues per year plus The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Print magazine (6 bi-monthly issues)

    The Download: newsletter delivery each weekday to your inbox

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.