Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

A View from Brittany Sauser

Mission to Mercury

A novel electric propulsion system will take an ESA spacecraft to deep space.

  • September 3, 2009

The European Space Agency (ESA) has announced that its newest satellite, called BepiColombo, will travel to Mercury using ion-electric thrusters developed by U.K. company QinetiQ.

An artist’s impression of BepiColombo. Credit: ESA

The space agency already uses a smaller version of the same system–made of T5 ion thrusters–aboard its GOCE satellite, which launched earlier this year to measure Earth’s gravitational field. BepiColombo, which is scheduled to launch in 2014, will use four T6 ion thrusters. The company says the thrusters used in both spacecraft are 10 times more efficient than traditional chemical ones. ESA awarded QinetiQ a contract worth $37.4 million to build the electric propulsion system.

While chemical propulsion systems are most commonly used in space, they are inefficient for deep-space missions to planets like Mercury because they require large amounts of fuel. Electric propulsion systems produce less thrust, but they are very efficient, making them ideal for long-distance missions.

Ion propulsion works by electrically charging, or ionizing, a gas and accelerating the resulting ions to propel a spacecraft. The concept was conceived more than 50 years ago, and the first spacecraft to use the technology was Deep Space 1(DS1) in 1998. Since then, aside from GOCE, there have only been a few other noncommercial spacecrafts that have used ion propulsion: NASA’s Dawn mission to the outer solar system, launched in 2007; the Japanese deep-space asteroid-sample-return mission called Hayabusa, launched in 2003; and ESA’s SMART-1 spacecraft, which launched in 2003 and crashed on the moon in 2006. (There are many commercial communication satellites that use ion thrusters.) NASA recently finished testing a new ion propulsion system for Earth-orbiting and interplanetary spacecraft that could be ready for launch by 2013.

While the technology still needs some fine-tuning, to make these engines even more efficient, compact, and economical, many experts say that for complex planetary missions that require lots of energy, ion-electric thrusters are definitely the answer.

Cut off? Read unlimited articles today.

Become an Insider
Already an Insider? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Online Only.
  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.