A View from Brittany Sauser

Mission to Mercury

A novel electric propulsion system will take an ESA spacecraft to deep space.

  • September 3, 2009

The European Space Agency (ESA) has announced that its newest satellite, called BepiColombo, will travel to Mercury using ion-electric thrusters developed by U.K. company QinetiQ.

An artist’s impression of BepiColombo. Credit: ESA

The space agency already uses a smaller version of the same system–made of T5 ion thrusters–aboard its GOCE satellite, which launched earlier this year to measure Earth’s gravitational field. BepiColombo, which is scheduled to launch in 2014, will use four T6 ion thrusters. The company says the thrusters used in both spacecraft are 10 times more efficient than traditional chemical ones. ESA awarded QinetiQ a contract worth $37.4 million to build the electric propulsion system.

While chemical propulsion systems are most commonly used in space, they are inefficient for deep-space missions to planets like Mercury because they require large amounts of fuel. Electric propulsion systems produce less thrust, but they are very efficient, making them ideal for long-distance missions.

Ion propulsion works by electrically charging, or ionizing, a gas and accelerating the resulting ions to propel a spacecraft. The concept was conceived more than 50 years ago, and the first spacecraft to use the technology was Deep Space 1(DS1) in 1998. Since then, aside from GOCE, there have only been a few other noncommercial spacecrafts that have used ion propulsion: NASA’s Dawn mission to the outer solar system, launched in 2007; the Japanese deep-space asteroid-sample-return mission called Hayabusa, launched in 2003; and ESA’s SMART-1 spacecraft, which launched in 2003 and crashed on the moon in 2006. (There are many commercial communication satellites that use ion thrusters.) NASA recently finished testing a new ion propulsion system for Earth-orbiting and interplanetary spacecraft that could be ready for launch by 2013.

While the technology still needs some fine-tuning, to make these engines even more efficient, compact, and economical, many experts say that for complex planetary missions that require lots of energy, ion-electric thrusters are definitely the answer.

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.