We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

A View from Brittany Sauser

Riding an Energy Beam to Space

The next advance in propulsion systems may employ an external light source.

  • August 5, 2009

This week at the 45th Joint Propulsion Conference and Exhibit in Denver, researchers, scientists, and engineers will discuss the latest advances in propulsion systems for spacecraft and commercial aircraft.

An early model of a laser-propelled lightcraft.
Credit: Rensselaer Polytechnic Institute

One topic being examined is beam-energy propulsion–using a beam of energy directed at a spacecraft either to heat up its propellant or to deliver electricity to its engine. By removing the energy source from the rocket itself, beam-energy propulsion has the potential to make launching spacecraft cheaper and more reliable.

In conventional chemical propulsion, massive amounts of energy are stored in a rocket’s fuel, which makes up a significant amount of its weight. In addition, chemical systems are heated to temperatures above the melting point of some materials in the rocket itself, says Alexander Bruccoleri, a researcher in the aeronautics and astronautics department at MIT, who recently received his master’s from the Space Propulsion Lab. Bruccoleri presented a paper at the conference on August 3 on a comparison metric he invented to test beam-energy systems.

Beam energy was dreamt up in the late 1970s by NASA Ames Research Center and the California Institute of Technology. “The idea was to use lasers as a heat exchanger–take the energy and make a hot fluid that can expand out of the nozzle,” Bruccoleri says. Now researchers are exploring ground-based lasers systems that heat fuels such as hydrogen to a temperature that is easier to manage. “The hydrogen molecules can be accelerated twice as fast as water molecules with the same temperature, providing better exhaust velocity–the thrust you get for the rate at which you are burning the propellant,” says Bruccoleri. Using light as an external power source can alleviate the weight and mass of having an onboard system, leaving room for scientific payloads, for example, and it provides more propulsive power.

Leik Myrabo, an associate professor of mechanical, aerospace and nuclear engineering a Rensselaer Polytechnic Institute in Troy, NY, says the last three to five years have brought these systems closer to reality because energy-beaming technology like laser beams and millimeter wavelength systems have dropped in cost. Myrabo, founder of Lightcraft Technologies, has demonstrated that one can propel a small “lightcraft” 71 meters in the air by using pulses of light that heat the propellant. He currently has a five-year grant from the US Air Force to explore laser propulsion to launch satellites for extremely low cost at high reliability, and is conducting tests in Brazil in collaboration with that country’s air force.

While Myrabo says that such systems could be a reality in 5 to 10 years, others are skeptical. Kevin Johnson, a space exploration and spacecraft propulsion manager at Lockheed Martin Space Systems in Denver, for example, expresses concern about the potential for atmospheric interference with the beam. Greg McAllister, a senior staff propulsion engineer also at Lockheed Martin, agrees and says that an energy source powerful enough to propel a rocket could also burn it up. (McAllister is presenting a paper at the conference on testing the pulse throttle thrusters used for the Mars Phoenix mission.)

Johnson says that while the system could generate enough power from a ground-based station and reduce costs, it is “20-plus years” from being feasible.

A test flight of a lightcraft using pulses of light conducted by Myrabo in 2000 at White Sands Missile Range in New Mexico. Credit: RPI

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Online Only.
  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.