A View from Brittany Sauser

A Robotic Arm for Lunar Missions

NASA has developed a robotic device that can help astronauts live and work on the moon and eventually Mars.

  • July 27, 2009

It looks like a lightweight crane, but NASA’s new robotic arm can do more than just lift objects. Called the Lunar Surface Manipulator System (LSMS), it could be a strong helping hand for astronauts living and working on the moon. It could, for example, move large payloads and precisely position scientific experiments.

LSMS is moving a simulated lunar oxygen generation plant from a
lunar lander mockup to the surface during a test in Moses Lake,
Washington. Credit: NASA/Sean Smith

NASA’s plan is not just to return to the moon by 2020, but to build a lunar outpost there. To do so, astronauts will need help lifting large and sometimes awkwardly-shaped payloads, and getting to spaces too high for them to reach. The device is similar to the space shuttle’s robotic arm, which has been essential for moving equipment and checking for damage to the shuttle’s heat shield.

The LSMS will be able to carry loads between 100 to 3,000 kilograms, and the arm and forearm would be able to rotate up 45 degrees and extend as high as about 9 meters. When reach is more important, it can be configured as a 3.75-meter-tall horizontal boom capable of stretching out 7.5 meters. The system will be modular so that other devices can be added to it. And it will be made out of lightweight, high-stiffness graphite-epoxy composites.

The manipulator system, which is being built at Langley Research Center, was first tested in 2008. “The manipulator did everything we wanted it to, from lifting large simulated airlocks and habitats to more delicate tasks, such as precisely positioning scientific payloads,” said John Dorsey, a senior aerospace engineer at Langley and a task led for LSMS development and testing, in a NASA press release.

Yet the system is still in early phases of development. Engineers have to make sure that it can withstand the lunar environment, including the fine-grained, low-gravity soil, or regolith, that could blow into the device’s crevasses and cause a jam. The arm will also have to withstand solar radiation storms.

Building such hardware will be important if astronauts’ are to live and work on the moon and eventually Mars. As this article on The Space Review points out, the new robotic system could be a good opportunity for International collaboration. It could also be sent to the moon in advance of astronauts to start building a habitat before they get there. Once NASA’s Constellation program gets the green light from the new administration–the program is currently being review by an independent panel–we may see more devices like this being built.

NASA also had some of its other lunar rovers and robotics at Moses Lake for the test. Credit: NASA
Learn more about robotics at EmTech Digital 2017.
Register now

Uh oh–you've read all five of your free articles for this month.

Insider Premium

$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Premium.

  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look. Exclusive early access to stories.

    Insider Conversations. Join in and ask questions as our editors talk to innovators from around the world.

You've read of free articles this month.