Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Many Signals, One Chip

New RF chip mimics inner ear to pick up cell-phone, Internet, radio, and TV signals.

The human ear is a marvel of efficient engineering–using very little energy, it can detect a stunningly broad range of frequencies. Inspired by that prowess, MIT engineers have built a fast, ultrabroadband, low-power radio chip that could be used in wireless devices capable of receiving many different kinds of signals.

Standing by The RF cochlea, a low-power, ultrabroadband radio chip, attaches to an antenna to pick up a wide range of signals.

Rahul Sarpeshkar ‘90, associate professor of electrical engineering and computer science, and his graduate student Soumyajit Mandal, SM ‘04, designed the chip to mimic the inner ear, or cochlea. The chip separates radio signals into their individual frequencies faster than any other human-designed spectrum analyzer and operates at much lower power. Traditional radio chips that could do this would consume too much power to be practical.

This story is part of the July/August 2009 Issue of the MIT News Magazine
See the rest of the issue
Subscribe

“The cochlea quickly gets the big picture of what’s going on in the sound spectrum,” says Sarpeshkar. “The more I started to look at the ear, the more I realized it’s like a super radio with 3,500 parallel channels.”

The researchers describe their new chip, which they have dubbed the “radio frequency (RF) cochlea,” in a paper published in the June issue of the IEEE Journal of Solid-State Circuits. They have also filed for a patent for a universal radio architecture that uses the RF cochlea to process a broad spectrum of signals, including those transmitted in most commercial wireless applications.

In the biological cochlea, sound waves are converted to mechanical waves that travel along the cochlear membrane and the fluid of the inner ear, activating hair cells, which send electrical signals to the brain. In the RF cochlea, which is embedded on a silicon chip measuring 1.5 by 3 millimeters, electromagnetic waves travel through electronic inductors and capacitors that imitate the biological fluid and membrane, and electronic transistors play the role of the hair cells. But while the human ear can perceive frequencies from 100 to 10,000 hertz, the RF cochlea’s range extends from 600 megahertz to 8 gigahertz, encompassing cell-phone, Internet, radio, and television signals.

Trained as an engineer but also a student of biology, Sarpeshkar–with his group in MIT’s Research Laboratory of Electronics–often draws on the natural world for inspiration in designing electronic devices. He says engineers can learn a great deal from studying biological systems that have evolved over hundreds of millions of years to perform sensory and motor tasks very efficiently in environments noisy with competing signals.

Though we have a long way to go before our inventions will successfully compete with those in nature, Sarpeshkar says, “we can mine the intellectual resources of nature to create devices useful to humans.

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insider? Log in.
Next in MIT News
Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.