Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

New Kind of Quantum Tunneling Experiment Goes Live

Physicists may be able to prove the existence of dark matter by watching a blank wall.

  • June 5, 2009

Almost every particle-physics experiment ever performed can be explained by a single theory called the standard model of elementary particles. But while that’s a great triumph for particle physicists, it also makes life rather boring. So the search is on for experiments that will reveal physics beyond the standard model, and one of the most exciting has just been switched on at the DESY particle accelerator in Germany.

The new experiment is searching for an entirely new form of tunneling, the weird quantum process by which a quantum particle passes through a potential barrier that a classical particle could not traverse. This behavior is the result of the Heisenberg uncertainty principle, which gives a finite probability for a quantum particle to cross any barrier of specific height and thickness.

But there are other kinds of tunneling too, as we recently saw. One of the most intriguing is that quantum mechanics allows photons to change into particles and then change back again. If those particles can pass through a barrier, then turn back into photons, it would look as if the photons were tunneling.

Experiments to measure this shining-a-light-through-a-wall effect are exciting because they could reveal particles that are not predicted by the standard model. For example, the particle that the folks at DESY are looking for is called the WISP (weakly interacting sub-eV particle), which could be a major component of dark matter. The standard model does not account for dark matter, which is why any discovery in this area would be a jaw-dropper for particle physicists.

The DESY experiment announced on the arXiv is essentially a high-tech wall. On one side of the wall is a laser, and on the other a detector. The trouble is that photons transform into WISPs only very rarely. So you need a huge number of photons to see the effect. The DESY team has a powerful laser producing some 10^19 photons per second, but even that isn’t enough. So the researchers have built themselves a couple of mirrors to reflect the photons back and forth, so that each photon approaches the wall around 200 times.

The DESY team calls itself the Axion-Like Particle Search Collaboration, or ALPS Collaboration. Having built their experiment, the researchers’ task now is to sit back and watch a blank wall.

And if they spot one or two photons popping through, you’ll be hearing a whole lot more about ALPS.

Ref: arxiv.org/abs/0905.4159: Resonant laser power build-up in ALPS: a light-shining-through-walls experiment

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Premium.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look: exclusive early access to important stories, before they’re available to anyone else

    Insider Conversations: listen in on in-depth calls between our editors and today’s thought leaders

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.