Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

How to Build a 100-Million-Image Database

The next generation of image-search algorithms must be evaluated using a database big enough to test their mettle.

  • June 1, 2009

We take some 80 billion photographs each year which would require around 400 petabytes to store if they were all saved. Finding your cherished shot of Aunt Marjory’s 80th birthday party among that lot is going to take some special kind of search algorithm. And of course, various groups are working on just how to solve this problem.

But if you want to build the next generation of image search algorithms, you need a database on which to test it, say Andrea Esuli and pals at the Institute of Information Science and Technologies in Pisa, Italy. And they have one: a database of 100 million high quality digital images taken from Flickr. For each image they have extracted five descriptive features such as colours, shape, and texture, as defined by the MPEG-7 image standard.

That’s no mean feat. Esuli and co point out that such an image database would normally require the download and processing of up to 50 TB of data, something that would take take about 12 years on a standard PC and about 2 years using a high-end multi-core PC. Instead, they simply decided to crawl the Flickr site, where the pictures are already stories, taking what data they need as descripitors. This paper describes the trials and tribulations of building such a database.

Elusi and co also announce that the resulting collection is now open to the research community for experiments and comparisons. So if you’re testing the next generation of image search algorithm, this is the database you need to set it loose on.

Finding Aunt Marjory may not be the lost cause we had thought.

Ref: http://arxiv.org/abs/0905.4627 :CoPhIR: a Test Collection for Content-Based Image Retrieval

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today
Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.