Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Emily Singer

A View from Emily Singer

The Personal Genome Project Has a Growth Spurt

Thirteen thousand people will divulge their genetic and medical histories online.

  • May 18, 2009

The 10 intrepid volunteers who signed up for George Church’s Personal Genome Project (PGP) will soon have a lot of company. According to a report from Northwestern University, 13,000 people are in the process of enrolling in the project, which involves having the coding region of your genome sequenced, and then sharing it, along with medical records and other information, in an open-access database for analysis by geneticists and others around the world.

The first 10 volunteers for the Personal Genome Project.

Here’s a brief description of the project from a piece I wrote last October.

Headed by Harvard University genomics pioneer George Church, the project aims to capitalize on rapid improvements in gene-sequencing technologies to better understand human health and disease. The PGP will serve as both a technological and an ethical test bed, assessing new methods of reading, sorting, and analyzing DNA, and highlighting societal issues that could spring up in the era of personal genomics–most notably, the privacy of genetic information.

Over the past year, the first 10 volunteers, including the linguist Steven Pinker, the entrepreneur Esther Dyson, and Church himself, have surrendered blood and skin samples, subjected themselves to medical examinations, and filled out extensive personal and medical questionnaires. Scientists have since gone to work sequencing their DNA, and an initial analysis of a portion of their genomes will be released today.

The data will be deposited into a database that Church and his collaborators hope will serve as a public resource for personal-genomics research, allowing other scientists to search for specific genetic variations linked to diseases and other traits. The researchers aim to grow the database rapidly and are now enrolling the next wave of volunteers, possibly as many as 100,000 participants. They are also creating cell lines from participants’ tissue samples, which they will make available for research.

Volunteers have to pass an online test to make sure that they understand exactly what participation entails–such as finding out you are at risk for a genetic disease.

For more on the PGP, check out a feature I wrote earlier this year on the challenges of interpreting the huge amount of genomic information made possible by new sequencing technologies.

The first set of data–released to participants in October–hints at both the promise of sequencing and the current limitations of genetic analysis. John Halamka, CIO of Harvard Medical School and another one of the 10 original volunteers, learned that he carries a mutation for Charcot Marie-Tooth disease, an inherited neurological disorder. This rare variation would not have been found with existing SNP arrays. But since Halamka survived childhood unscathed, and only three other people in the world have been shown to carry that particular mutation, it’s hard to know what impact, if any, it has had on his health. Perhaps many people carry the variation with no ill effect, and the link between the disease and the mutation has been overstated. Or perhaps the gene has a broader impact than expected, raising the risk of other neurological diseases. (Or, as George Church notes, the finding may simply be an error.)

The greater the number of entries in the database, the easier it will be to understand a finding like Halamka’s. And in April 2008, Church’s team received approval from Harvard to expand the project from 10 to 100,000 participants. (Church plans to scale up slowly, multiplying the number of subjects by 10 each year.) This next phase will seriously test both the technology used to sequence the genomes and the strategies used to interpret the resulting data. As of November, about a year into the project, PGP scientists had gotten only about a fifth of the way through sequencing the coding regions of the original volunteers’ genomes. (Church plans to expand the PGP to the entire genome once sequencing becomes cheap enough.) If they’re to sequence thousands more genomes, sequencing technology will need to become as fast and robust as Church believes it can be.

And here’s a Q & A with Church, published soon after he announced the project.

Couldn't make it to EmTech Next to meet experts in AI, Robotics and the Economy?

Go behind the scenes and check out our video
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.