We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Sustainable Energy

An Ocean Trap for Carbon Dioxide

A New Jersey plant is planning to put ocean-floor carbon sequestration to the test.

In an attempt to address global warming, a handful of power plants are capturing carbon dioxide during the energy-generation process, liquefying the gas under high pressure and piping it to geologic storage sites miles away. But sequestering carbon dioxide underground is impractical in many areas, and it raises fears that the stored gas will escape.

Offshore: SCS Energy hopes to pump carbon dioxide pollution into sandstone located almost two miles beneath the floor of the Atlantic Ocean.

Now a new plant in Linden, NJ, will test an ocean carbon-sequestration technology that could expand its potential dramatically. If permits are approved, the plant, operated by SCS Energy, based in Concord, MA, will pump its carbon dioxide pollution into sandstone located almost two miles beneath the floor of the Atlantic Ocean.

Previous storage efforts have focused on filling underground structures such as depleted oil reservoirs, but these structures don’t contain enough volume to accommodate the vast amounts of CO2 produced. On the other hand, undersea storage has raised concern that carbon dioxide could slowly leak into ocean water.

Harvard University professor of Earth and Planetary Sciences Daniel Schrag addressed some of these concerns in a 2006 PNAS paper, in which he suggested storing carbon dioxide in porous sediment hundreds of meters below the sea floor in deep parts of the ocean. Stored at this depth, under higher pressure and temperatures, the carbon dioxide should be less buoyant and remain trapped indefinitely.

The two injection sites being surveyed for the new carbon-sequestration project are under about 100 meters of water, and about 2,500 to 3,500 meters down in the rock. “We are going deeper overall under the floor, but we aren’t working in a deep region of the sea,” says Schrag, who serves as a consultant to the project.

Pressure-management systems should make the process possible, Schrag adds. “It turns out pressure management is the most important part of this, and it’s much easier under the ocean,” he says.

Both on land and offshore, pumping carbon dioxide into sandstone usually displaces water, causing pressure to build up. “If you inject vast amounts of CO2, you have to make space,” says Schrag. “You push the water to the side, but it can’t go anywhere.” Injecting the CO2 too quickly, or adding more than the rock can hold, risks fracturing the sandstone, allowing the CO2 to slowly leech out over time.

Schrag argues that drilling an escape route for water that has remained trapped in the porous rock for millions of years will help ease the pressure on the rock. “This ancient seawater is very similar to modern seawater, so there should be no ecological impact from letting it out,” he says.

The release of seawater from the rock will raise sea levels over time, but not by much, says Schrag. The four million tons of CO2 produced by the plant each year will only cause about a micrometer rise in seawater over 100 years. Even if 1,000 coal plants began sequestering carbon offshore, sea levels should only rise by a millimeter during this time frame, Schrag says.

Dave Goldberg, a research scientist at Columbia University’s Lamont-Doherty Earth Observatory, agrees that the idea is sound but says that any pilot project should be carefully shepherded to make sure that there is no harm to the ecosystem. The ocean is so vast that injecting CO2 shouldn’t raise water levels much, either by lifting the floor or displacing trapped water, he says, but the bacterial ecology might potentially be changed. “Water slowly percolates through the rock at the bottom of the ocean in many places,” Goldberg says. “The impact of speeding this up and introducing new opportunities for water movement is an open research question.”

Carbon sequestration remains a controversial issue, however, and many environmental groups worry that it could allow coal plants to earn approval ahead of cleaner energy technologies. Another concern is how sequestration will impact ocean wildlife.

Whether carbon sequestration will become a reality will also be an issue of politics. Schrag was recently appointed to President Obama’s Council of Advisors on Science and Technology. Schrag says that carbon sequestration should be one of several ways to combat climate change. “We need it all,” he says. “We need renewables, we need better energy efficiency, we need energy conservation, and we need carbon sequestration.”

Cut off? Read unlimited articles today.

Become an Insider
Already an Insider? Log in.
More from Sustainable Energy

Can we sustainably provide food, water, and energy to a growing population during a climate crisis?

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.