Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Emily Singer

A View from Emily Singer

Studying Extreme Genomes

Tales of human outliers, including an unbreakable man who inspired new treatments for osteoporosis.

  • May 11, 2009

In the late 1990s, a surprised radiologist in Connecticut came across a real-life version of Bruce Willis’s character in the movie Unbreakable. The patient came to the hospital after a motor vehicle accident. But rather than revealing broken bones, the x-rays revealed an extremely high bone density. (Bone-density testing later confirmed it to be the highest ever recorded.) In 2002, Richard Lifton, a geneticist at Yale who specializes in genetic analysis of human outliers–people with extreme phenotypes–discovered that a mutation in a gene called LDL-related receptor protein 5 was responsible for the man’s high bone density, a condition shared by about half of his family. (While mutations in this gene can sometimes lead to health problems, Lifton says that this family’s only complaint was that they couldn’t float in water because their bones are so dense.)

Lifton’s team went on to study the molecular pathway affected by this mutation–and just seven years later, drugs targeting one of these molecules is in late-stage clinical testing for osteoporosis, a progressive disease of brittle bones that leads to fracture and a substantially increased risk of disability and death among the elderly.

While the unbreakable man’s case is unusual, Lifton’s approach isn’t. Anyone familiar with the history of human genetics knows that many of the field’s most significant early discoveries came from studies of families afflicted with rare diseases. Uncovering the genes involved in those diseases has in turn shed light on more common medical problems, such as high cholesterol, Parkinson’s disease, and autism.

As genetic technologies have improved, so has the scope of these investigations. While researchers once had to undertake painstaking pedigree studies to pinpoint the region of the genome affected in a particular family and then sift through the most likely genetic candidates in that region, rapid advances in DNA sequencing in the past few years have significantly broadened the number of genes that can be searched. Scientists are now beginning to sequence individuals’ entire exome–the gene coding region of the genome–searching for mutations in genes never suspected to play a role in particular diseases. Lifton, whose research has focused in large part on the genetics of hypertension, is now sequencing the exomes of a number of people referred to his clinic with severe early hypertension. Expect to see a growing number of studies along these lines.

Couldn't make it to EmTech Next to meet experts in AI, Robotics and the Economy?

Go behind the scenes and check out our video
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.