Skip to Content

Hunt for Dark Matter

New detectors may finally reveal dark-matter particles.
ATIC is tested before the 2007 launch.
Dark matter was first postulated by the Caltech astrophysicist Fritz Zwicky in papers published in the 1930s. Zwicky, shown here at the Palomar Observatory, calculated that there was more mass in a cluster of galaxies he was studying than could be accounted for by measurements from the telescopes of the day.
This image, a composite of images taken by the Hubble Space Telescope, shows how the pull of a ring of dark matter distorts the light from stars in distant galaxies.
The most promising technologies in the search for dark matter are systems for direct detection of WIMPs, or weakly interacting massive particles. The detector that physicists believe is likely to find WIMPs first, called CDMS (for “cryogenic dark-matter search”), is shown at bottom left. The two hexagonal boxes contain massive semiconducting crystals held at temperatures near absolute zero. When a WIMP strikes, the nuclei of the semiconducting material will recoil in a characteristic fashion, creating an electron hole and a small amount of heat that are detected by superconducting circuits and by a film of tungsten that acts as a very sensitive thermometer. Researchers hope to see about one particle per kilogram of crystal every three months.
Other WIMP detectors–including XENON, pictured here, and WARP (for “WIMP Argon Programme”), on the next page–are designed to capture nuclear recoil in vats of liquefied noble elements.
WARP, a WIMP detector designed to capture nuclear recoil in vats of liquefied noble elements.
The glass chamber in the center of the machine shown here is filled with a liquid that will evaporate, forming bubbles as large as a millimeter in diameter, when a WIMP strikes. Because heat or cosmic rays can also cause nuclear recoil, detection will need to be confirmed by multiple technologies.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.