Emerging Technology from the arXiv

A View from Emerging Technology from the arXiv

How Magnetic Fields May Affect Biological Tissue

Magnetic fields may set up damaging currents within blood vessels, physicists argue.

  • April 9, 2009

How do magnetic fields affect biological tissue? An entire field of science called bioelectromagnetics has grown up to study this problem and yet nobody is quite sure how to answer this question.

It’s possible that several mechanisms may be at work and today Zakirjon Kanokov from the Joint Institute for Nuclear Research in Dubna, Russia, and a few pals suggest a new one. They start by considering the way in which heat jiggles charge carriers in any system above absolute zero. This gives rise to tiny, unpredictable and rapidly varying changes in any current, a phenomenon known as Johnson noise.

Kanokov and co consider the case when the charge carriers are ions in a fluid flowing through a tube. The ions are free to move but obviously confined within a specific volume. The team then poses the question: what happens when you apply a static magnetic field?

The answer, they say, is a resonance effect in which the ionic currents grow stronger. The strength of the resonance depends on the size of the capillary and the strength of the field.

Kanakov and co have worked out how this effect might play out in the human body; after all the body is filled with calcium ions in a fluid flowing through narrow tubes.

They say that this kind of resonance can occur in the aorta at magnetic field strengths of a few picoteslas (10^-12 T) and in narrower capillaries at a few hundred microteslas. The Earth’s field is a few tens of microteslas.

That’s an interesting calculation that will need some careful testing.

The team go further and speculate that these ionic currents may disrupt blood flow and cause tissue damage. That’s a big jump that is not backed up by their calculations but an interesting conjecture nonetheless. But finding this effect against a background of all the other ways in which tissue becomes damage is going to be a devil of a task.

Ref: arxiv.org/abs/0904.1198: On the Influence of Weak Magnetic and Electric Fields on the Fluctuations of Ionic Electric Currents in Blood Circulation

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Premium.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look: exclusive early access to important stories, before they’re available to anyone else

    Insider Conversations: listen in on in-depth calls between our editors and today’s thought leaders

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.