Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

Gravity Satellite Blasts Off on Climate Mission

The spacecraft will measure the earth’s gravitational field with new accuracy.

Today the European Space Agency (ESA) launched one of the most advanced Earth-observing satellites ever built. The GOCE (Gravity field and steady-state Ocean Circulation Explorer) satellite blasted off from the Plesetsk Cosmodrome in Northern Russia aboard a modified intercontinental ballistic missile.

Liftoff: ESA’s Gravity field and steady-state Ocean Circulation Explorer (GOCE) will measure the earth’s gravity field. The satellite underwent final checks in a clean room (top) before being mounted to a rocket. It was launched today from the Plesetsk Cosmodrome in Northern Russia. An artist’s illustration (bottom) shows the satellite in orbit. It’s five meters in length and one meter wide, with four body-mounted and two wing-mounted solar panels.

GOCE will orbit the earth at an altitude of around 260 kilometers for 24 months, circling from pole to pole as the planet turns beneath it. From August, the satellite will measure the earth’s gravitational field with better accuracy and higher resolution than any previous mission.

Measuring the earth’s gravitational field will provide scientists with new insights into the composition of the planet, the movements of its oceans, and the thickness and movement of polar ice sheets. Crucially, it will also help scientists build computer models to predict the impact of climate change more accurately.

Monitoring ice coverage, sea-level changes, and ocean circulation will be a particularly important part of the mission. “One of the major impacts of climate change is loss of ice mass and increase in sea-level rise,” says Prasad Gogineni, the director of the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas. Data from the new satellite will be coupled with sea-level models to better predict regional and global sea-level rises, adds Claude Laird, a research associate at CReSIS.

Danilo Muzi, project manager of GOCE, says that the spacecraft’s sensors are 100 times more sensitive than anything flown up until now. The spacecraft will measure the earth’s gravitational field using a gradiometer. This type of instrument is already used for ground-based measurements and on airplanes, but it has never before been placed on a satellite. The gradiometer consists of six ultrasensitive accelerometers–sensors that measure acceleration and were specifically built for the mission. These accelerometers are arranged in three pairs and are aligned along three different axes of the gradiometer. By measuring subtle differences in the gravitation pull felt by each pair of accelerometers, the satellite will produce a better map of gravity measurements for the entire globe.

GOCE’s instruments will also let scientists measure the earth’s gravity field down to very small spatial scales. “The smaller detail you have, the more you can learn about the earth underneath the surface,” says John Wahr, a professor of physics at the University of Colorado. The satellite will provide a resolution better than 100 kilometers. “To get the whole earth–including the oceans–at the small scales and the amazing resolution that GOCE is going to provide is just remarkable and extremely useful,” Wahr says.

NASA currently has a pair of satellites that measure the earth’s gravity field in orbit. These twin spacecraft, known as GRACE, were launched in 2002 and orbit 500 kilometers above the earth’s surface. They have already provided valuable information about how Antarctic and Greenland ice-sheet mass is changing, but their spatial resolution is not as good as GOCE, says Gogineni. “The [new] satellite will provide an improved data set that will allow us to do a much better job of measuring the ice-sheet mass, particularly in Greenland,” he says.

Smooth sailing: GOCE will use a gradiometer featuring sensitive accelerometers to measure the earth’s gravity gradient. It will also use an ion engine on its tail end to compensate for the deceleration caused by the atmosphere in low-earth orbit.

In order to make the measurement as accurate as possible, the researchers had to compensate for the air drag created by the atmosphere at low-earth orbit. This drag creates a tiny deceleration of the satellite, which would be sensed by the accelerometers as acceleration. Therefore, the researchers added an ion engine to the tail of the satellite that will emit ions at a rate that perfectly matches this deceleration.

GOCE is part of a larger ESA mission called the Living Planet Program, which will involve launching seven more satellites over the next two years, each designed to measure a different feature of the planet. For example, this summer, ESA plans to launch a satellite called SMOS to measure the earth’s moisture and ocean salinity. Another satellite, called CrySat-2, will blast off at the end of the year to map ice coverage. In the past, both ESA and NASA have focused on launching larger satellites carrying many instruments. In 2002, ESA launched Envisat, a 10-instrument satellite, and NASA has an ongoing program called Landsat, which started in 1972 and is considered the gold standard for earth-science missions.

Wahr, who worked on the GRACE mission, says that the new mission is very exciting. “For those of us in the business, it is going to be wonderful,” he says.

Hear more about climate change at EmTech MIT 2017.

Register now

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.