Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

Emily Singer

A View from Emily Singer

A Fast, Programmable Molecular Clock

The bacteria-based timepiece could be used as a biosensor for changing environmental conditions.

  • October 29, 2008

A molecular timepiece that ticks away the time with a flash of fluorescent protein could provide the basis for novel biosensors. The clock, or synthetic gene oscillator, is a feat of synthetic biology–a fledgling field in which researchers engineer novel biological “parts” into organisms.

UC San Diego bioengineers have created the first stable, fast, and programmable genetic clock that reliably keeps time by the blinking of fluorescent proteins inside E. coli cells. The clock’s blink rate changes when the temperature, energy source, or other environmental conditions change. Shown here is a microfluidic system capable of controlling the environmental conditions of the E. coli cells with great precision–one of the keys to this advance.
Credit: UC San Diego Jacobs School of Engineering

To create the clock, scientists genetically engineered a molecular oscillator composed of multiple gene promoters, which turn genes on in the presence of certain chemicals, and genes themselves, one of which codes for a fluorescent protein. When expressed in E. coli bacteria, the feedback system turns the fluorescent gene on and off at regular intervals.

The clock’s oscillations can be tuned by the temperature at which the E. coli are grown, the nutrients they are fed, and specific chemical triggers. According to a paper published today in Nature, the fastest oscillations that the scientists have recorded so far are about 13 minutes.

“The on-off frequency could potentially be used to determine the level of some toxic chemical in the environment,” says Jeff Hasty, a bioengineer at UC San Diego, who led the project. “One could make simple modifications so that it responded to other chemicals or sugars.”

According to a press release from UC San Diego,

One next step is to synchronize the clocks within large numbers of E. coli cells so that all the cells in a test tube would blink in unison. “This would start to look a lot like the makings of a fascinating environmental sensor,” said Jeff Hasty, a UC San Diego bioengineering professor and senior author on the Nature paper. Researchers in his lab have also developed sophisticated microfluidic systems capable of controlling environmental conditions of their E. coli cells with great precision. This enables the bioengineers to track exactly what environmental conditions affect their clocks’ blink rates.

Cut off? Read unlimited articles today.

Become an Insider
Already an Insider? Log in.
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Print + All Access Digital.
  • Print + All Access Digital {! insider.prices.print_digital !}*

    {! insider.display.menuOptionsLabel !}

    The best of MIT Technology Review in print and online, plus unlimited access to our online archive, an ad-free web experience, discounts to MIT Technology Review events, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    6 bi-monthly issues of print + digital magazine

    10% discount to MIT Technology Review events

    Access to entire PDF magazine archive dating back to 1899

    Ad-free website experience

    The Download: newsletter delivery each weekday to your inbox

    The MIT Technology Review App

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.