Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

A New Approach to Spinal Injury

Stem cells in the spinal cord could spur healing

For the more than 30,000 people worldwide who suffer spinal-cord injuries each year, research by a postdoctoral fellow at MIT’s Picower Institute for Learning and Memory could one day result in some very good news.

By encouraging ependymal cells (red) in injured spinal cords to produce more of a valuable type of cell called an oligodendrocyte, researchers hope to one day prompt injured spinal cords to repair themselves.

When spinal injury results in paralysis, the cause is usually damage to nerve-cell axons, the long fibers that conduct electrical impulses to and from the brain. Damaged axons either don’t regenerate themselves or remain deficient in myelin, the sheath that protects them and allows them to transmit signals quickly and reliably. Research published in the July issue of PLoS Biology by the Picower Institute’s Konstantinos Meletis and colleagues at the Karolinska Institute in Sweden suggests that stem cells in the spinal cord itself could help repair that damage.

This story is part of the November/December 2008 Issue of the MIT News Magazine
See the rest of the issue
Subscribe

In several past studies, other researchers have grown stem cells in vitro from cells taken from adult spinal cords. To study how neural stem cells operate in vivo, Meletis and his colleagues identified a population of mouse spinal-cord cells that they suspected had the potential to display stem-cell characteristics. Then they genetically engineered mice to mark those cells with green fluorescent protein. “We could then see both the initial stem-cell population and the type of cells they give rise to after spinal-cord injury,” Meletis says.

They found that after a spinal-cord injury, the stem cells proliferated and migrated toward the injury site, where they differentiated into two cell types. The majority became scar-forming cells, but a small population became a valuable type of cell called an oligo­dendrocyte, which has the ability to wrap around axons and form myelin. “Oligodendrocytes are thought to be important for repairing spinal-cord injury,” says Meletis. The researchers hope that their work could lead to therapies that encourage an injured spinal cord’s own stem cells to ramp up production of oligodendrocytes and minimize the production of scar-forming glia, which inhibit regeneration. With more oligodendrocytes around to form more myelin, axons would stand a better chance of getting back to work transmitting signals to and from the brain.

Get stories like this before anyone else with First Look.

Subscribe today
Already a Premium subscriber? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.