Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

A Way to Find Hidden Fingerprints

Scientists have developed a better way to identify fingerprints on bullets and fragments of explosives.

Fingerprints are crucial evidence in many criminal investigations because they can tie a suspect to the scene of a crime with almost indisputable accuracy. Now crime-scene investigators have a new technique for finding fingerprints left on metals, like the cartridge from a spent bullet or fragments of an improvised explosive device, even if the perpetrator tries to wash the evidence clean.

Criminal catcher: A fingerprint, outlined with a black conducting powder, can be seen on this bullet. Salt in human sweat causes the metal to corrode, and the powder adheres to the corroded areas of the metal after an electrical charge has been applied. Because of this, touching the bullet leaves an image of one’s fingerprint etched in the metal.

Forensic scientist John Bond of the Northamptonshire Police, in the United Kingdom, developed the technique after discovering that certain metals, including copper and brass, corrode very slightly when touched, leaving behind a faint but indelible fingerprint. Already, the technique has been used to provide fingerprints in a nine-year-old double-homicide case in Kingsland, GA, after conventional fingerprinting methods were unable to identify any prints on a shell casing, says Bond.

Traditional fingerprinting techniques involve triggering a physical or chemical reaction with the deposits left behind by a finger to make a print visible. If these deposits are removed, the techniques will fail. This seriously limits what forensic scientists can do to identify fingerprints in spent cartridge cases and at arson scenes where normal prints have been removed, says Hazel Johnson, a specialist advisor at the Forensic Science Service, based in Birmingham, in the U.K. “We will look at the metals under a laser for potential fingerprints, but rarely is the technique able to spot the print,” she says.

The new technique makes use of a physical change that occurs to metal when a person touches it. This is due to the salt in human sweat: ionic salt molecules present in the fingerprint residue corrode the metal surface to produce an image that can only be removed by abrasive cleaning of the metal. Bond, also a fellow at the University of Leicester, in the U.K., found that the fingerprint can be made visible by applying a voltage to the metal and coating it in a metallic powder.

“The advantage of the new technique is its permanence,” says Ron Singer, crime-laboratory director for the Tarrant County Medical Examiner Crime Lab, in Fort Worth, TX. “It is looking for the minute amount of etching that takes place in the metal–the physical change that has occurred to the surface.” Singer says that the technique could prove more resilient than conventional methods. “If you don’t get it right the first time, you can do it again,” he adds.

Once the University of Leicester scientists knew that fingerprints could corrode metal, they applied a very large electrical charge–2,500 volts–to the corroded area. They then applied to the metal a very fine, black conducting powder similar to photocopier toner, which adhered to the areas of corrosion. “You could see the outline of the fingerprint in the black powder, thereby rendering the fingerprint visible,” says Bond.

Johnson thinks that the technique is exciting but warns that the surface area of cartridges is so small that the entire print may not be obtained. “One of the major issues in fingerprint analysis is how much of the print is necessary before you can reliably say it is someone’s fingerprint,” says Singer. In general, though, Singer is impressed with Bond’s research. “The more methods we have to develop invisible fingerprints, the better off we are.”

Bond says that the technique has been extensively tested in the lab and will be applied in more cases in both the United States and the United Kingdom. Furthermore, he has been in contact with the U.S. military, which is eager to use the technology for roadside bombs or improvised explosive devices. “Traditional bomb-making metals are ones like copper, which we know corrode with fingerprints,” says Bond. “The fingerprint on metal from an exploded bomb should work the same way it does on a bullet with a fingerprint.”

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today
Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.