Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Emily Singer

A View from Emily Singer

Cellular Reprogramming Feats Keep Getting Better

  • August 28, 2008

Imagine if a piece of damaged heart muscle could be replaced with a simple chemical trick that triggered neighboring cells to convert themselves into whatever type of tissue was needed. Scientists at Harvard took a step closer to that possibility with a paper published today in the journal Nature. Doug Melton and his collaborators “transformed mouse pancreas cells that aid digestion into the insulin-producing cells that are destroyed in childhood diabetes, potentially giving stem cell scientists a powerful new way to one day grow replacement tissues for patients,” according to the Boston Globe.

The findings follow a whirlwind of new advances in cellular reprogramming, which include creating patient-specific stem-cell lines without the need for human eggs or embryos. The new research differs, however, in that one type of adult cell is converted directly into another type. The process doesn’t require that the cells first be transformed into undifferentiated cells before developing into the desired cell type.

According to the Washington Post,

Through a series of painstaking experiments involving mice, the Harvard biologists pinpointed three crucial molecular switches that, when flipped, completely convert a common cell in the pancreas into the more precious insulin-producing ones that diabetics need to survive.

“The feat … raises the tantalizing prospect that patients suffering from not only diabetes but also heart disease, strokes and many other ailments could eventually have some of their cells reprogrammed to cure their afflictions without the need for drugs, transplants or other therapies.

“It’s kind of an extreme makeover of a cell,” said Douglas A. Melton, co-director of the Harvard Stem Cell Institute, who led the research. “The goal is to create cells that are missing or defective in people. It’s very exciting.”

Melton and others caution that it’s likely to take years to translate the advance into useful treatments. From the Washington Post:

“It’s an important proof of concept,” said Lawrence Goldstein, a stem cell researcher at the University of California, San Diego. “But these things always look easier on the blackboard than when you have do [sic] them in actual patients.”

Although the experiment involved mice, Melton and other researchers were optimistic the approach would work in people.

“You never know for sure–mice aren’t humans,” [Harvard stem-cell biologist George] Daley said. “But the biology of pancreative [sic] development is very closely related in mice and humans.”

Melton has already started experimenting with human cells in the laboratory and hopes to start planning the first studies involving people with diabetes within a year. “I would say within five years we could be ready to start human trials,” Melton said.

AI is here. Will you lead or follow?
Join us at EmTech Digital 2019.

Register now
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.