Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

Jennifer Chayes

The director of the new Massachusetts-based Microsoft Research lab wants to use mathematics to design better search engines, recommendation systems, and online auctions.

When Jennifer Chayes left her job at the University of California, Los Angeles, in 1997 to become a researcher at Microsoft’s labs in Redmond, she declared that it would take 100 years for her academic work to find real-world applications. But as managing director of the newly announced Microsoft Research New England lab in Cambridge, MA, she has parlayed her background in mathe­matical physics into research with broad implications for today’s Internet.

To Chayes, the trails left by countless social and business interactions on the Internet amount to enormous math problems. Solving those problems, she believes, will help computer scientists create online tools, such as search engines and social networks, that are more efficient and effective.

This story is part of our May/June 2008 Issue
See the rest of the issue
Subscribe

TR assistant editor Erica Naone met with Chayes at the still-empty offices of her new Cambridge lab to learn how a mathematician understands the Internet.

TR: What is the common theme in your research?

Multimedia

Jennifer Chayes: I’m particularly interested in self-organized networks, such as the World Wide Web and social networks. In self-organized networks, people or entities choose to enter the network on their own. There’s not some authority dictating the structure of the network, so that structure is constantly evolving.

Can you give me an example of how you try to understand a network?

There’s a whole area called game ­theory, which takes into account that people are selfish agents. [It also models their interactions and the possible outcomes, attempting to define the best result for each “player.”] Now researchers are starting to study game theory on networks, modeling the complex interactions among many selfish agents. Understanding the possible outcomes and behaviors of these networks is one of the next big mathematical challenges.

TR: Are there examples?

JC: [Online] advertisers bidding on a variety of keywords. Each advertiser is a self-interested party interacting with all other advertisers who bid on the same keywords. Each advertiser has a valuation for each word, and an overall budget. Since we don’t know how to deal with the repeated game on the network implicit in this set of interactions, we just do a separate auction on each keyword to assign ads to search words. Maybe if we could deal with some of these problems mathematically, we could come up with something that was actually more efficient than these separate auctions–better for the advertisers, better for the customers, better for the search engines.

TR: How would that help?

JC: If we more efficiently match up ads with queries when we perform the ad auctions, then the consumer is more likely to get what he or she is seeking, the advertiser is more likely to generate maximum sales per ad dollar, and the search engine is more likely to generate the maximum revenue per search. No search engine comes close to the optimum today. So there’s a lot of room for improvement.

TR: Where else might your work help?

JC: I think that recommendation systems are going to be as important as search algorithms [see “Recommendation Nation”]. In a recent piece of work, we came up with a list of desired properties for a recommendation system, and what we ended up doing was proving mathematically that there is no possible recommendation system that has all these desired properties. So I would have to choose which properties I am willing to give up and design recommendation systems that preserve the properties I want most.

TR: What kinds of properties?

JC: There’s transitivity. If I trust the recommendation of person B, and person B trusts the recommendation of person C, then I should trust the recommendation of person C.

TR: What about privacy? Can recommendation systems still let users keep control?

JC: Those are exactly the kinds of questions that we’re asking. We didn’t consider privacy in our work, but one could definitely add privacy to the list of properties, and then it might be possible to come up with a theorem saying, for example, you can’t have a recommendation system that will deliver all the information you want and have all the privacy.

TR: How might this research change the way we use these applications?

JC: It could be that at some point somebody could go onto a social network and say, “Here are the properties that I want for my recommendation system,” and a different person could go in and say, “Here are the properties that I want,” and they could get two different recommendation systems. In a similar way, search engines have been around for a while, but I think they’re still very far from exactly what we want, and over time we’ll be able to come up with search engines which are much more personalized. Then we would also have to figure it out on the back end. Can we accommodate all these different algorithms? I hope that at some point computations would be done differently for your search engine and recommendation system and for mine.

Couldn't make it to Cambridge? We've brought EmTech MIT to you!

Watch session videos

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.