Intelligent Machines

Desultory D-Wave

D-Wave may not have made a working quantum computer.

D-Wave, a startup in Burnaby, British Columbia, claims to have demonstrated a working prototype of what it says will become the world’s first “commercially viable” quantum computer. But as even its supporters admit, the company has a severe credibility problem in the scientific community (see “Riding D-Wave”). In looking at its claims, I think it’s helpful to ask three questions.

First, what has D-Wave actually built? Second, even if D-Wave has built a quantum computer, is there any realistic possibility of scaling it up to hundreds or thousands of quantum bits (or “qubits”) in a few years–as D-Wave has repeatedly promised it will do, and as would be necessary to solve any practical problems? Finally, if D-Wave has built a scalable device, what problems can it solve more quickly than existing computers can?

This story is part of our May/June 2008 Issue
See the rest of the issue
Subscribe

Physicists tend to doubt D-Wave’s claims because it has presented no convincing evidence that its current device is quantum-mechanical. As far as any outsider knows, all D-Wave has produced is an extremely expensive and inefficient classical computer with a grand total of 28 bits. By its own admission, D-Wave has not yet demonstrated quantum “entanglement” between even two qubits. (Entanglement is a quantum form of correlation between two or more qubits; all parties agree that it is a non-negotiable requirement for quantum computing.)

Among computer scientists, another source of skepticism is that D-Wave has misled the public about what quantum computers might be able to do if we had them. In particular, D-Wave’s publicity materials talk cavalierly about using its machine to solve what are known as NP-complete problems. These problems (of which the best-known example involves determining the shortest route for a traveling salesman visiting a number of cities) are important because they are common and are thought to be intractable for any computer today. However, almost all computer scientists also believe that these problems cannot be efficiently solved using a quantum computer. We have no good evidence that quantum computers–D-Wave’s or anyone else’s–could find even approximate solutions much faster than a classical computer in cases of practical interest.

Let me be clear: I think that quantum computers are possible in principle, and that D-Wave’s approach might even get us there. I’ve also met people from D‑Wave; I don’t think they’re frauds. But the human capacity for self-deception being what it is, scientists train themselves to look for red flags–and D-Wave is pretty much a red-flag factory.

Scott Aaronson is an assistant professor in MIT’s Department of Electrical Engineering and Computer Science.

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Premium.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look. Exclusive early access to stories.

    Insider Conversations. Listen in as our editors talk to innovators from around the world.

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.