Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Rewriting Life

A Prosthesis for Balance

Scientists are testing a device to help those with inner-ear problems.

Imagine a world where the earth wavered with every step, where you couldn’t tell up from down in a dark room, or where walking on a soft carpet threw you off balance. That’s the reality for people who have lost function in the vestibular system, part of the inner ear that controls balance.

Neuroscientists at the Massachusetts Eye and Ear Infirmary, in Boston, are gearing up to test a new prosthesis that might help. In a month, Dan Merfeld will flip the switch on an experimental device implanted into a rhesus monkey whose own vestibular system has been disabled. Merfeld and his collaborator Richard Lewis hope that the device will do for balance what the cochlear implant has done for hearing. “If we can show we can improve balance in monkeys, that would be a stimulus for moving into clinical trials,” says Lewis, a scientist and otoneurologist (a neurologist who specializes in ear diseases).

The cochlear implant–a surgically implanted electronic device that gives deaf people a sense of sound–has been the most successful neural prosthesis to date. Merfeld, Lewis, and others are leveraging technologies developed for that implant to create a similar prosthesis for the vestibular system.

The inner ear functions like a gyroscope. Three orthogonally oriented structures, called the semicircular canals, sense the orientation of the head via movement of fluid within the canals. Nerves connected to these structures send a train of neural signals to the brain, which integrates that information with visual signals and other cues to maintain balance and stabilize vision–for example, to keep our eyes focused on one point as we walk, eliminating the jittery, handheld-camera effect we might otherwise perceive. When the vestibular system is wiped out, serious balance issues can result. Such a disorder is sometimes a side effect of antibiotics. It can also be caused by trauma, infection, and some diseases. For example, more than 500,000 individuals in the United States suffer from Meniere’s disease, a particularly debilitating disease of the inner ear.

“Patients can remain with symptoms of imbalance, which is sometimes crippling, forever,” says Timothy E. Hullar, an otolaryngologist at the Washington University School of Medicine, in St. Louis. “As a clinician with a number of patients with bilateral vestibular loss, I’m very excited to think that in a few years prostheses might be a treatment option.”

The relative simplicity of the vestibular system makes it an ideal target for prosthesis. The horizontally oriented canal, for example, detects left-right motion, such as a negative shake of the head. Neurons that connect to this canal send electrical pulses to the brain at a high rate when the head turns to the left, and a low rate when it turns to the right. Merfeld’s prosthesis mimics this signaling system: a motion sensor on the head measures rotation, sending that information to a microprocessor that converts it into electrical impulses, which are transferred to an electrode implanted into the inner ear.

Previous research has shown that the device can help squirrel monkeys that had part of their vestibular system rendered dysfunctional. When the device was turned on, the monkeys’ vestibuloccular reflex improved, meaning that they could better keep their eyes stable while their heads moved. (So far, the researchers have targeted only one of the canals with their prosthesis. Other scientists working in the field have targeted all three canals in rodents.)

The team now wants to determine how well the device can treat other symptoms of vestibular disorders, such as balance and perception. (The brain uses information from the vestibular system to control both the muscles that move our eyes and the postural muscles that keep us upright.)

Measuring these senses has proved hard to do, even in humans. We manage our vestibular system–unlike vision or hearing–largely unconsciously, making it difficult for people to quantitatively report what they perceive, says Christopher Platt, who oversees balance and vestibular research at the National Institute on Deafness and Other Communication Disorders. So Merfeld and Lewis will test their prosthesis in the rhesus monkey, which can be trained to perform complex tests. To test balance, for example, the animals are taught to stand with one limb on each of four small platforms that individually move around, giving the illusion of an earthquake. Then the researchers measure the animal’s ability to maintain balance in response to the movements. To measure perception, animals are taught to turn a steering wheel to vertically orient a line on a computer screen. Without other visual cues, a monkey or person without vestibular function will orient the line at the same angle as the head.

“That’s very important because it means they can test the monkeys with exactly the same tests they give to humans, and get a better estimate of how well their device is doing, with the hope it can be transferable in humans,” says Platt.

If all goes well in initial experiments, the researchers hope to increase the complexity of the device, targeting all three canals of the inner ear, and eventually other structures. Neither Merfeld’s group nor others working in the field have yet targeted a second set of vestibular structures, the otolithic organs, which sense the head’s linear acceleration.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.