Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

From the Labs: Nanotechnology

New publications, experiments and breakthroughs in nanotechnology–and what they mean.

Coating That Repels Oil
New materials clean themselves, elimi­nating the need for soap and water.

A new coating made of microscopic threads can repel a variety of liquids, including water (dyed blue), methanol (green), octane (red), and methylene iodine (clear).

Source: “Designing superoleophobic surfaces”
Gareth H. McKinley, Robert E. Cohen, et al.
Science 318: 1618-1622

This story is part of our March/April 2008 Issue
See the rest of the issue
Subscribe

Results: Researchers at MIT and the Air Force Research Laboratory at Edwards Air Force Base in California have made novel materials that cause oil to bead up and form near-spherical droplets that easily roll or even bounce off surfaces. The researchers also analyzed the mechanisms behind the materials’ oil-repellent properties and developed design rules that could be useful for making similar materials in the future.

Why it matters: The researchers’ oil-repellent surfaces could make rubber hoses and engine seals more durable by preventing them from absorbing oil and swelling. Eventually, the detailed design rules could help scientists develop materials for other applications–such as transparent, self-cleaning displays, something cell-phone companies have been working on for years.

Methods: The air force researchers first developed new molecules containing high concentrations of fluorine atoms. When applied to a surface in a thin film, the molecules cause oil to bead up. The MIT researchers found a way to blend these molecules with commercial polymers and enhanced the liquid-­repelling properties of the blended material by spinning it into microscopic threads. These threads accumulate on a surface, creating a rough, air-trapping network that alters the contact angle between the material and oil, causing the oil to bead up even more than it would on a flat film.

Next Steps: The polymeric surfaces aren’t ideal: for one thing, they’re opaque. The researchers hope that the design rules they developed will allow other researchers to create super-oil-repellent materials that overcome current limitations.

Better Lithium-Ion Electrodes
Silicon nanowires could increase the storage capacity of batteries.

Source: “High-performance lithium battery anodes using silicon nanowires”
Yi Cui et al.
Nature Nanotechnology 3: 31-35

Results: Researchers at Stanford University demonstrated that silicon nanowires used as anodes in lithium-ion batteries have five to eight times the energy-storage capacity of the graphite anodes normally used in the batteries. The researchers also showed that the nanowires can absorb and release lithium ions quickly over many cycles without breaking apart.

Why it matters: The advance could lead to greater storage capacity in lithium-ion batteries. Such batteries work by shuttling lithium ions between the cathode and the anode (the positive and negative electrodes) as the batteries are charged and discharged. Silicon has long been considered a promising electrode material because it can, in theory, hold 10 times as many lithium ions as graphite. But as silicon absorbs lithium ions, it swells to many times its original volume. Over several cycles, this normally causes silicon electrodes to break apart and stop functioning properly. The silicon nanowires, however, were able to swell to four times their original size and remain intact, demonstrating that silicon could be a practical material for battery electrodes.

Methods: The researchers distributed gold nanoparticles on a stainless-steel substrate. When they exposed the nanoparticles to silane, a gas containing silicon, the gold catalyzed the growth of silicon nanowires. The researchers then tested the nanowire electrodes. They also studied the composition and structure of the nanowires.

Next Steps: The researchers are developing other ways to make the silicon nanowires, with the goal of finding techniques that are less expensive and thus potentially more practical for commercial manufacturing. Better cathodes also need to be developed before the full benefits of the new anode materials can be realized.

Couldn't make it to EmTech Next to meet experts in AI, Robotics and the Economy?

Go behind the scenes and check out our video
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.