Intelligent Machines

From the Labs: Information Technology

New publications, experiments and breakthroughs in information technology–and what they mean.

Bionic Eye
An electronic contact lens could act as an on-eye display or a biosensor.

A biocompatible contact lens has metal circuitry embedded in it.

Source: “Contact lens with integrated inorganic semiconductor devices”
Babak Parviz et al.
IEEE International Conference on Micro Electro Mechanical Systems, January 13-17, 2008, Tucson, AZ

This story is part of our March/April 2008 Issue
See the rest of the issue
Subscribe

Results: Researchers at the University of Washington have built a biocompatible contact lens with electronics and optoelectronics ­embedded in it. In preliminary studies in which the device was not turned on, a rabbit wearing it suffered no adverse effects.

Why it matters: A contact lens with both a wireless receiver and a display built into it could superimpose important information on objects in a soldier’s field of view. It could tell cell-phone users where incoming calls are coming from, and eventually it might even serve as a video screen. A lens with embedded sensors could detect critical biomarkers that indicate disease, giving doctors a noninvasive diagnostic tool and helping them track a patient’s health over time.

Methods: The lens was made from polyethylene tereph­thalate (the plastic used in beverage bottles), which was covered with metal wires in order to connect light-­emitting diodes. The researchers used chemicals to carve out circular indentations in which the LEDs would be placed. Because electronics are made at temperatures high enough to melt plastic, the LEDs were fabricated separately and transferred to the lens. The device was then coated with a biocompatible material and shaped.

Next steps: Right now, the LEDs are about 300 micro­meters in diameter, and no more than 16 working LEDs have been produced on a lens. LEDs this size tend to break during the lens-shaping process, so the researchers will try to shrink them to 30 micro­meters, which could make possible a lens display of a few hundred pixels. Also, the team needs to make sure that the electronic lens is safe for the eye when it is turned on.

3-D Light Channels
Miniature waveguides can steer light through solid materials in three dimensions.

Source: “Embedding cavities and waveguides in three-dimensional silicon photonic crystals”
Paul V. Braun et al.
Nature Photonics 2: 52-56

Results: Researchers at the University of Illinois, Urbana-Champaign, have developed a laser technique that can carve detailed, three-dimensional waveguides into silicon photonic crystals, materials with regularly spaced holes that can control the motion of photons.

Why it matters: Optical chips, which use photons instead of electrons to carry information, could speed up computers, because photons travel faster than electrons. They could also cheaply increase bandwidth in telecommunications equipment. Previously, researchers made flat, two-dimensional waveguides using lithography, a common chip-making technique. But a way to make three-­dimensional waveguides gives researchers more freedom in designing optical circuits: light can be bent around corners, and optical materials can be layered.

Methods: To build their photonic crystal, the researchers began by packing silica beads together to form a three-­dimensional matrix. They immersed the beads in a light-sensitive monomer, which flowed into the spaces between the beads. A precise laser beam solidified some of the monomer into “paths” of polymer. Then the researchers rinsed the structure, removing the excess monomer, and filled the remaining spaces between beads with silicon. Finally, they used an acid to dissolve the beads and the polymer, leaving a silicon structure with periodic holes where the beads had been and channels–waveguides–where the polymer paths had been.

Next steps: The researchers are creating waveguide designs that are more complex. They will also explore ways to build functional optical circuits.

Cut off? Read unlimited articles today.

Become an Insider
Already an Insider? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Premium.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look: exclusive early access to important stories, before they’re available to anyone else

    Insider Conversations: listen in on in-depth calls between our editors and today’s thought leaders

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.