Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

Expandable Silicon

A new chip design could lead to far cheaper large-area electronics.

The semiconductor industry is great at miniaturizing silicon devices and packing huge numbers of them into very small spaces. But for some applications, such as big-screen displays, it’s helpful if transistors and other silicon-based devices are distributed relatively sparsely across many centimeters or even meters. Traditionally, cheap methods for distributing electronics over large areas have produced low-­performance devices; improving performance has required lots of expensive silicon.

An array of silicon discs is expanded in a laboratory setup. Such arrays can expand to as much as 50 times their original area and be molded to curved surfaces for applications such as structural sensing.

Now Peter Peumans, a professor of electrical engineering at Stanford University, and his colleagues have developed small silicon chips that can be mechanically expanded to cover large areas, including curved surfaces such as the one pictured above. The chips consist of discs of sili­­con with silicon wire spooled around them. Each disc can incorporate transistors, pressure sensors, or tiny solar cells. When the corners of the chip are pulled, the wires coiled around the silicon discs unwind. As they do, the discs, which start out nearly touching each other, spread apart. The result is a netlike array of silicon devices.

This story is part of our March/April 2008 Issue
See the rest of the issue
Subscribe
Multimedia

Peumans is working with Boeing to put crack-­detecting sensors between layers of structural composite materials on aircraft. And he founded NetCrystal in Mountain View, CA, to make photovoltaic panels that spread out islands of photovoltaic chips in a way that exposes them to more sunlight, without the need for focusing lenses or mirrors. What’s more, distributed high-performance transistors could control pixels in next-generation displays, such as those based on organic light-­emitting diodes.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.