Skip to Content

Wire Power

One photovoltaic wire could power a sensor; arrays could yield cheaper electricity.
December 18, 2007

This 300-nanometer-wide silicon wire (left) generates electricity from sunlight. Such nano­wire solar cells would initially be useful in tiny sensors, or in robots whose electronics might need built-in power. But arrays of microscopic wires could change the economics of solar power by enabling solar cells built from cheap materials such as low-grade silicon or even iron oxide–rust.

A number of such cheap materials absorb light and generate electrons, but defects in the materials usually “trap” the electrons before they can be collected. Microscopic wires, though, can be made thin enough to allow electrons to slip out easily and generate current, even if the material has defects. And the wires can be long enough to absorb plenty of photons from sunlight hitting them at an angle.

The image is colored to highlight functional layers of the nanowire, which was made in the lab of Harvard University chemist Charles Lieber. The layers are made of silicon modified in ways that give them properties useful for generating and harvesting charged particles. To make solar panels, the microscopic wires could be grown in dense arrays. The below image shows a cross section of a silicon-wire array fabricated in the labs of chemist Nathan Lewis and physicist Harry ­Atwater at Caltech. Each wire is two or three micrometers in diame­ter. Both groups are in the early research stages, but arranging microscopic wires in a forestlike configuration could lead to new materials that harvest sunlight cheaply and efficiently.

Courtesy of Brendan Kayes and Michael Filler

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.