Intelligent Machines

The World's Smallest Radio

A tiny radio made out of a single nanotube could find use in biological and environmental sensors.

Researchers have fashioned the world’s tiniest radio out of a carbon nanotube. The nanotube, placed between two electrodes, combines the roles of all the major electrical components in a radio, including the tuner and amplifier. It can tune in to a radio signal and play the audio through an external speaker.

Good vibrations: A single carbon nanotube can tune in to a radio signal, amplify it, and demodulate it to get the audio encoded on the carrier radio wave. The nanotube starts vibrating (left) in tune with a radio signal if the signal is at the same frequency as the nanotube’s natural resonance frequency. The nanotube radio’s developers transmitted songs–including “Good Vibrations,” by the Beach Boys, and “Largo,” from the opera Xerxes by Handel–in the laboratory and were able to tune in and listen to them using the nanotube radio.

While the practical application of the radio is uncertain, it could be used in biological and environmental sensors. Researchers are now developing microelectromechanical (MEMS) sensors to measure blood sugar levels or cancer markers in the body. Instead of researchers using a stamp-size radio-frequency identification tag, a nanotube radio could be packaged with the MEMS-based sensor and injected directly into the bloodstream, says Alex Zettl, an experimental physicist at the University of California, Berkeley, who is leading the development of the nanotube radio. Once in the body, the radio could provide wireless communication between the tiny biological sensors and an external monitor. To do that, however, the nanotube radio would have to work as a transmitter. Right now, it is only configured as a receiver, but Zettl says that “the same physics would work as a transmitter.”

The nanotube radio works differently than a conventional radio does. Conventional radios have four main functional parts: antenna, tuner, amplifier, and demodulator. Radio waves falling on a radio antenna create electric currents at different frequencies. When someone selects a radio station, the tuner filters out all but one of the frequencies. Transistors amplify the signal, while a demodulator, typically a rectifier or a diode, separates the data–the music or other audio–that has been encoded on a “carrier” electromagnetic wave.

Zettl’s team used one carbon nanotube for all these functions. Because of their unique electrical properties, carbon nanotubes have been previously used to make electronic components such as diodes, transistors, and rectifiers. “It was a revelation that all of this could be built into the same [nanotube],” Zettl says.

Multimedia

The nanotube is grown sticking out from a tungsten surface, which acts as a negative electrode. The tip of the carbon nanotube is also negatively charged. A vacuum separates the nanotube from a positive copper electrode. The researchers use an external battery to apply a voltage between the two electrodes. Electrons jump out from the negative nanotube tip to the positive electrode, creating what is called a field emission current.

Zettl explains that the “nanotube does not act as an antenna in the conventional sense.” That is, instead of picking up electromagnetic waves electrically, it picks them up mechanically. This happens because of the nanotube’s natural resonance frequency. As soon as it encounters radio waves that match the frequency, the nanotube starts vibrating in step with the waves, effectively tuning in only to that radio signal. The nanotube’s vibrations change the field emission current, and the mechanical vibrations are converted into an electrical signal. An external battery powers the field emission current and amplifies the radio signal. The field emission is naturally asymmetrical–it allows current to flow only in one direction, just like the diodes and rectifiers used in demodulators. So the nanotube also acts as a demodulator and detects the music encoded onto the carrier wave.

To tune to a different radio station, the researchers change the resonance frequency of the nanotube. They do this by changing the voltage applied across the electrodes. “It’s like tuning a guitar string,” Zettl says. “The electric field pulls on the nanotube.” With the same nanotube, the researchers can cover the entire FM radio band.

Cees Dekker, a nanotube researcher at the Delft University of Technology, in the Netherlands, calls the new radio “an appealing demonstration that very simple devices can be used for everyday [tools].” Whether or not the device is used for sensors remains to be seen, he says, but for now, the simple demonstration is a good start.

Cut off? Read unlimited articles today.

Become an Insider
Already an Insider? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look: exclusive early access to important stories, before they’re available to anyone else

    Insider Conversations: listen in on in-depth calls between our editors and today’s thought leaders

  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.