Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Rewriting Life

From the Labs: Biotechnology

New publications, experiments and breakthroughs in biotechnology–and what they mean.

Glowing from Within
A new fluorescent marker illuminates tissue deep within living animals

Scientists engineered this three-month-old frog to make a new fluorescent protein in its muscle tissues.

SOURCE: “Bright Far-Red Fluorescent Protein for Whole-Body Imaging”
Dmitriy Chudakov et al.
Nature Methods 4: 741-746

This story is part of our November/December 2007 Issue
See the rest of the issue
Subscribe

RESULTS: Using genetic-­engineering techniques, scientists have altered a red protein found in sea anemones to create a fluorescent marker that can be used to study living tissue deep in the body.

WHY IT MATTERS: The light from existing fluorescent markers is difficult to detect through layers of tissue, so the use of such markers has been limited to dissected or surface tissue or to transparent animals, such as worms. This new marker emits light in the far-red part of the spectrum, which can better pass through living tissue. That means the marker can be used in live animals to help researchers track molecular and cellular activity, such as the rapid division of cancer cells, in real time.

METHODS: By inducing both random and directed mutations in the anemone protein, scientists altered it to create new compounds that are brighter than the original one. They then tested the new proteins both in frogs and in human cells, showing that they shine much more brightly than those previously available.

NEXT STEPS: Collaborators of the scientists will soon begin testing the proteins in mice. Although the markers aren’t bright enough for whole-body imaging of humans, they might eventually be used to image human tumors that are near the surface of the skin, such as melanoma and breast cancer.

The First Diploid Sequence of an Individual Human
The highly accurate sequence suggests that our genetic code is five times as variable as we thought

SOURCE: “The Diploid Genome Sequence of an Individual Human”
Samuel Levy et al.
PLoS Biology 5: e254

RESULTS: Genomics pioneer Craig Venter and his colleagues have generated a highly accurate sequence of Venter’s genome, one that includes the DNA sequences inherited from both his mother and his father.

WHY IT MATTERS: The genome sequence generated by the Human Genome Project, the massive, distributed effort to sequence human DNA that was completed in 2003, was a milestone in the history of biology. But the DNA sequence produced by the project represented just one set of chromosomes (every human has two sets, one inherited from each parent), and it drew on DNA samples from many individuals. As a result, it didn’t reflect some of the variability between individuals. ­Venter’s diploid genome suggests that genetic variation between individuals is approximately 0.5 percent, not the 0.1 percent that earlier sequencing projects suggested.

METHODS: In the new study, researchers used a method of gene sequencing called Sanger sequencing. The method is more expensive than newer approaches, but it generates longer strings of DNA that are easier to assemble into a complete genome.

NEXT STEPS: Venter and his colleagues plan to add phenotypic information, such as medical records and physical characteristics, to the database housing his genome. This will allow scientists to begin analyzing an individual’s genomic information in the context of his or her actual traits.

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insider? Log in.
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Print Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.