Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

Improving Athletic Performance

A sensor worn behind the ear could monitor a person’s movements.

Researchers at the Imperial College London have developed a sensor worn behind the ear that can measure an individual’s biomechanical data, such as his or her posture and gait, during an activity. The data is then wirelessly transmitted to a computer so that the wearer’s performance can be measured and assessed in real time.

Performance enhancer: A sensor worn behind the ear of an athlete can measure posture, stride length, step frequency, and acceleration using a triaxial accelerometer and activity-recognition software. The data is collected and wirelessly transmitted to a computer in real time.

The sensor could be used to both optimize athletic performance and help monitor changes in movement in people recovering from surgery or suffering from neurodegenerative diseases. According to Guang-Zhong Yang, a professor in the department of computing at Imperial College and the project leader, the device works and could be mass-produced within 12 to 18 months.

There are a number of technologies that are looking toward providing this kind of information about an athlete’s performance, says Peter Vint, a senior sports technologist for the United States Olympic Committee. “But what distinguishes it [the sensor] from others is it is very small and worn on a place in the body that is stable in noncontact sports.”

The sensor is about the size of a cuff link and measures the posture, stride length, step frequency, and acceleration of an individual. In addition to being used in applications for training athletes, the device could be employed to monitor a patient’s recovery after surgery, such as orthopedic, or injury, such as a fracture. In those cases, an individual will often compensate for the affected area, which impinges movements, says Yang. The device could also be used to monitor an individual suffering from a progressive illness, such as a neurodegenerative disease: it could detect telltale changes in the person’s movements.

The sensor uses an accelerometer that allows it to measure motion in three dimensions. For example, when a runner hits the ground, a shock wave is transmitted through his body from his foot. The accelerometer is able to pick up these waves and sense the balance of the body and the changes in the runner’s gait, such as the length of strides and the frequency of steps.

This information is processed within the sensor and wirelessly transmitted to a computer, where software developed by Yang’s team automatically extracts the data, analyzes it, and displays the results.

Being able to look at the data in real time is a big advantage because a viewer could see a runner’s stride length start to shorten and know that she is going to have problems finishing the race, says Scott McLean, an associate professor of kinesiology at Southwestern University.

The device has been tested on individuals recovering from surgery and is currently being tested on athletes. The researchers hope to improve the range of the sensor, which is currently only at 10 meters, and incorporate more information, such as heart rate, says Yang.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.