Kate Greene

A View from Kate Greene

Moving Toward a Tera-Scale Computer

Intel has announced record speed for a silicon modulator.

  • August 1, 2007

Researchers at Intel have found a way to boost the speed of a silicon modulator so that it can encode data onto beams of light at a rate of 40 gigabits per second, besting the company’s previous record by 10 gigabits. By comparison, commercial modulators, which are made of expensive, nonsilicon materials, have only recently been available at 40 gigabits per second.

Modulators are crucial components in all fiber-optic networks, converting bits of information into pulses of light. But today’s modulators are made of expensive materials such as lithium niobate, and they can’t be easily shrunk down and mass-produced. Mario Paniccia, the lead researcher on the work, believes that by making modulators and other photonic devices, such as lasers and detectors, out of cheap silicon, he can revolutionize telecom, as well as the inside of your computer. If photonic devices are cheap, he says, then they could be integrated into the guts of a PC; speedy beams of light could replace the copper wires currently used to move bits around between processing cores and to and from the memory.

Intel has been on a roll recently, churning out journal articles and conference papers detailing its silicon photonic devices. In 2004, Paniccia’s team unveiled a one-gigabit-per-second silicon modulator, and in 2005, the researchers improved the speed to 10 gigabits. That same year, they built a remarkably good all-silicon laser. In 2006, the team announced a “hybrid laser” that combines indium phosphide with silicon, allowing it to be processed similarly to other silicon devices. (The hybrid laser will most likely be used in communication and computer applications, while the all-silicon laser will be useful for certain types of medical imaging.) And in January, the researchers bumped up their modulator to 30 gigabits per second.

With all these devices quickly improving in performance, Paniccia says that it’s time to start thinking about integrating hybrid lasers and modulators onto a single chip. Since both devices are based in silicon, they can be made cheaply, taking advantage of existing fabrication facilities and techniques. Ideally, within five years, says Paniccia, Intel will have a chip the size of a fingernail that can send a terabit’s worth of data. That would be enough speed to download DVD-sized movies from the Internet in seconds and render complex three-dimensional graphics on computers in real time.

By building modulators and hybrid lasers in silicon, Intel hopes to build a single chip capable of terabit per second data rates. This image shows a 40-gigabit per second silicon modulator held in the center of a mount. Credit: Intel

Cut off? Read unlimited articles today.

Become an Insider
Already an Insider? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look. Exclusive early access to stories.

    Insider Conversations. Listen in as our editors talk to innovators from around the world.

  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

    Access to the Magazine archive. Over 24,000 articles going back to 1899 at your fingertips.

    Special Discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.