Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Rewriting Life

A Better Brain Scanner

New brain scanners could shed light on fear, joy, and disease.

New brain scanners promise to deliver images of higher resolution than any now available from a commercial instrument. By using multiple sensors placed close to the head, the device can generate accurate images in less time, which could ultimately aid in the diagnosis of diseases such as Alzheimer’s and epilepsy. Medical imaging giant Siemens is developing a commercial version of the technology.

Clearer pictures: Brain imaging systems that use multiple sensors can generate higher-resolution pictures of the brain. The top image shows a prototype under development at Massachusetts General Hospital with 90 channels. The bottom image shows a 32-channel device being developed at Siemens for commercial use. (The information about this product is preliminary. The product is under development and not commercially available in the United States, and its future availability cannot be assured.)

“This might be the biggest-impact development [in brain imaging] for the next few years, especially because Siemens is commercializing it,” says John Gabrieli, a neuroscientist at MIT. “If you have a more precise view of the brain, you could take a big step forward.”

In magnetic resonance imaging (MRI), a magnetic field generated by a large magnet sends protons in the brain spinning. Specially constructed coils of wire in the machine detect changes in the spin, which differ in different tissue types, as the magnetic field changes. Computer algorithms then use measurements from different parts of the brain to create the anatomical picture.

MRI machines in medical centers typically have up to 12 coils, but the new devices under development have up to 96 coils arrayed in a dense field over the scalp. “A small detector up close is more efficient,” says Lawrence Wald, a biophysicist at Boston’s Massachusetts General Hospital (MGH), whose team has developed the devices in collaboration with Siemens. “But it only captures a small part of the brain, so you need lots of small detectors spread out over the scalp.” Each coil measures a small but highly accurate spin signal from the chunk of brain tissue beneath it. The images are then computationally stitched together to create a high-resolution picture of the brain.

Multimedia

These multichannel devices have already helped some epilepsy patients. In a study using an early prototype, neurologists found abnormalities in about two-thirds of epileptic patients whose previous brain scans had been declared normal, making these patients better candidates for neurosurgery.

Scientists are now using a newer prototype to study Alzheimer’s patients. “In diseases like Alzheimer’s, where there is not a basic diagnosis based on imaging, we hope that being able to look at smaller alternations in the brain would yield some additional diagnostic information and perhaps allow you to monitor medication,” says Wald.

Patients suspected of having Alzheimer’s may get an MRI to rule out other neurological causes for their symptoms. But recent studies suggest that subtle neurological changes increase risk for the disease; these changes can include shrinkage of the hippocampus, a crucial memory area, and of parts of the cortex important for memory and higher cognitive function. Detecting these changes requires lengthy scanning sessions to generate high-quality data, making such scans unfeasible in routine clinical practice. “This technology has the potential to change that,” says Brad Dickerson, a neurologist at Harvard Medical School, in Boston. While he cautions that routine clinical use is still years off, he says that “we are rapidly moving into a new era where we can use this kind of data to identify abnormalities that are consistent with Alzheimer’s.”

Siemens is now working on a commercial version of the 32-channel array developed at MGH, which is expected to be on the market later this year. The imaging device, now being tested by some of Siemens’s customers, “increases spatial or temporal resolution,” says Jeffrey Bundy, vice president of the MR division at Siemens Medical Solutions, headquartered in Malvern, PA.

The device is likely to have important applications in functional magnetic resonance imaging (fMRI), a variation of standard MRI that tracks blood flow in the brain as an indirect measure of activity. The technique is often used to locate the parts of the brain that control specific functions, such as speech and movement. The first clinical application for the device will likely be fMRI for neurosurgery planning, says Bundy. “Surgeons want to know where speech and motor areas are when they take a tumor out–the more precise, the better.”

The instrument could also impact our basic understanding of the brain. “The spatial resolution of fMRI is somewhat limited,” says Gabrieli. “We’ve hit the wall on a lot of scientific questions.” With higher-resolution images, scientists could try to determine neurological basis of various aspects of cognitive function. Gabrieli, for example, says that he’d like to figure out if different parts of the amygdala–a small structure deep in the brain that plays a key role in emotion–regulate different emotions, such as fear and joy.

While Siemens is putting the finishing touches on the 32-channel array, Wald and his colleague Graham Wiggins, also at MGH, are already developing new scanners with even more channels, including 96-channel and 128-channel arrays. “These are the highest-resolution brain images being taken today,” says Wald.

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insider? Log in.
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.