Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Rewriting Life

New Single-Molecule Detector

Nanometer-size silicon rings could make detecting DNA and individual proteins easier.

Using tiny silicon rings that trap and circulate light, researchers have made an ultrasensitive device that can detect single biomolecules. Unlike standard techniques for detecting individual molecules, the new method, described online in Science last week, does not require labeling the target molecules with fluorescent tags, potentially making it simpler and less expensive.

Nano alert: The frequency of light trapped inside tiny silicon rings changes when a single protein lands on the ring. The sensitive detectors could screen for cancer, pathogens, and other genetic or infectious diseases.

Detecting individual biomolecules could provide an ultrasensitive and easy-to-use screen for protein biomarkers associated with cancer and a new way to analyze DNA molecules to identify genetic and infectious diseases. By sniffing out the telltale molecules even when they exist at very low concentrations, the detection method could help catch cancer in its very early stages and pathogens before they spread, says Kerry Vahala, an applied physics professor at the California Institute of Technology.

Most standard techniques to sense single molecules require tagging the target molecules with fluorescent chemicals. These fluorescent dyes shine when exposed to light so that researchers can spot the target molecules and measure their concentration. “You’re essentially putting a big neon sign on the molecule so that it lights up very brightly,” Vahala says. The method works well but requires extra processing steps and specialized lab equipment.

Instead, the new doughnut-shaped silicon detectors rely on measuring light frequency. The silicon rings, which average 80 micrometers in diameter, trap light of a particular resonance frequency. When a target molecule sticks to a ring, it slightly changes the frequency of the light.

Vahala and his colleagues make an array of the rings using common fabrication techniques. They coat the silicon surface with specific molecules that bind to the target molecules–for example, an antibody to an immune-system protein. Then the researchers immerse the detectors in water or human blood serum containing the protein, throw laser light on the setup, and monitor the light frequency with an optical detector. Every time a protein molecule lands on a silicon detector, the frequency changes.

“You could envision sets of rings that are prepared to look for different chemicals or biomolecules,” Vahala says.

The frequency change is easy to detect because the silicon rings trap light very effectively. “The light that’s trapped inside the doughnut will stay there for a long time, relatively speaking, for the time scale of light,” Vahala says. “It will stay there for hundreds of nanoseconds.” Light circles around the ring more than 100,000 times–thousands of times longer than in similar commercial devices–interacting with the protein at every pass. As a result, the frequency change gets amplified enough to be picked up easily. This approach to detecting the signal is new and “very exciting,” says Richard Zare, a chemistry professor at Stanford University.

Many researchers are developing methods to detect single biomolecules that do not require fluorescent tagging. But the new method is one of the first to detect single molecules using light, says Stephen Quake, a bioengineering professor at Stanford University. “It’s a real tour de force and will probably have tremendous applications in the sensing area,” he says.

Get stories like this before anyone else with First Look.

Subscribe today
Already a Premium subscriber? Log in.
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.