We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

Memories Misplaced, Not Lost

New insight into Alzheimer’s.

Long-term memories thought to have been erased in people with Alzheimer’s disease may not be lost forever, suggests recent research led by Li-Huei Tsai, Picower Professor of Neuroscience. The work of Tsai and her colleagues, described in the April 29 advance online edition of Nature, involved mice genetically engineered to show symptoms similar to those of people with neurodegen­erative disorders, such as Alzheimer’s, that affect cognitive functions. When placed in a stimulating habitat or treated with an experimental drug, the mice recovered lost memories, recalling lessons they’d learned but forgotten.

Professor Li-Huei Tsai

About four years ago, Tsai’s lab developed mice that could be made to produce p25, a protein implicated in some neurodegenerative illnesses. The protein caused brain-cell loss in the mice, leading to what seemed like memory loss.

This story is part of the July/August 2007 Issue of the MIT News magazine
See the rest of the issue

In their recent work, however, the researchers found that the memories were merely out of reach. Here’s how they figured it out: For 10 minutes, mice were trained to make particular ­associations–between, say, a specific ­environment and a mild foot shock. The mice were then given four weeks to store those associations in long-term memory. At that point, their p25 production was switched on; the mice lost 25 to 30 percent of their forebrain neurons and couldn’t remember the things they’d learned. But after four weeks in an environment with stimuli such as toys, perches, exercise equipment, and other mice, the mice recovered the lost associations. “We therefore conclude that even in demented patients, memories are not necessarily lost but rather become inacces­sible,” says Tsai. “This is in line with observations that even patients suffering from severe dementia eventually experience short epi­sodes of apparent clarity, a phenomenon termed ‘fluctuating memories.’”

When the researchers later examined the animals’ brains, they found that mice whose memories had been restored did not grow new forebrain neurons to replace those that were lost. Instead, the remaining neurons formed new connections with one another. “We think that rewiring of the brain mediates, at least in part, the recovery of memories,” says Tsai.

Tsai got similar results when mice with induced brain-cell loss were treated with histone deacetylase (HDAC) inhibitors, experimental drugs that increase expression of certain genes. HDAC inhibi­tors haven’t been used in Alzheimer’s patients, though one type is being tested to treat some cancers in humans.

“It has been known for a long time that a combination of mental and physical exercises improves cognitive function in rodents and in humans,” says Tsai. Her work, she believes, shows that “the need for treatment with HDAC inhibitors would be lessened if we all keep ourselves mentally and physically engaged.”

Be there when AI pioneers take center stage at EmTech Digital 2019.

Register now
Want more award-winning journalism? Subscribe to All Access Digital.
  • All Access Digital {! insider.prices.digital !}*

    {! insider.display.menuOptionsLabel !}

    The digital magazine, plus unlimited site access, our online archive, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    Digital magazine (6 bi-monthly issues)

    Access to entire PDF magazine archive dating back to 1899

    The Download: newsletter delivery each weekday to your inbox

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.