Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Rewriting Life

Cheaper Diagnostics

A mix of “bar-coded” particles could detect multiple compounds at once.

By simultaneously scanning for thousands of genes or proteins in a biological sample, doctors could diagnose many diseases in a single step. But today’s DNA or protein microarrays are too expensive for widespread clinical use, in part because their manufacture is a complex, multistep process.

A potentially cheaper tool for detecting telltale DNA and proteins appears on this page: capsule-shaped polymer particles, each 180 micrometers long. Each particle can be loaded with a specific biomole­cule so that one half of the particle fluoresces when it detects a disease target. Imprinted with bar-code-like patterns of holes, the particles can be read optically; they could serve as detectors for more than a million distinct biological targets. Technicians with the right optical equipment could, in theory, mix the particles with a sample and read off the results.

This story is part of our May/June 2007 Issue
See the rest of the issue
Subscribe

Unlike microarrays, the particles can be manufactured using a single, integrated process, which was developed by MIT chemical engineer Patrick Doyle, doctoral student Daniel ­Pregibon, and colleagues at MIT and Harvard Medical School. The process begins with two adjacent 100-­micrometer-­wide streams of fluid. One of the streams contains biomolecules that will attach to disease targets. A pulse of ultraviolet light passes through a stencil and strikes the streams, causing precursors of polyethylene glycol in both to solidify into a single particle. The stencil gives one half of each particle an identifying pattern of holes.

Jay Groves, a chemist at the University of California, Berkeley, calls the synthesis a “clever” step toward low-cost diagnostics. One remaining challenge is to develop a more practical system for reading the particles: Doyle and colleagues use a bulky, impractical fluorescence microscope.

Cut off? Read unlimited articles today.

Become an Insider
Already an Insider? Log in.
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.