Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

A Tool Worthy of Batman's Utility Belt

A small, powerful rope-climbing device can pull a person up 30 stories in 30 seconds.

It takes about six minutes for a firefighter with a full load of gear to reach the top of a 30-story building by running up the stairs–and when he gets there, he’s tired. A group of MIT students have designed a rope-climbing device that can carry 250 pounds at a top speed of 10 feet per second. They have a contract to make the climbing device for the U.S. Army for use in urban combat zones, and they hope to make it available to rescue workers.

The mechanism of a rope-climbing machine made by Atlas Devices can grip a rope strongly enough to carry 250 pounds while advancing the rope at a rate of 10 feet per second.

The students founded a company, Atlas Devices, based in Cambridge, MA, to commercialize the device, which is about the size of a power drill. Nathan Ball, Atlas’s chief technology officer, says that such a device has never been made before because the batteries and motors needed to generate enough power for rapid rope ascents have been bulky and heavy. Atlas’s 20-pound machine uses a fast-charging, high-power-density lithium-ion battery made by A123 Systems, based in Watertown, MA. (See “More Powerful Batteries.”) To use the device, a soldier or rescue worker wraps a rope around its cylinder and clips it to a harness worn around the waist.

Multimedia

Ball says the biggest design challenge in making the climber was a mechanical one. “We had to come up with a clever mechanism to grip the rope securely while not damaging it,” he says. The device relies on the capstan effect: the more times a rope is wrapped around a cylinder, the stronger the device’s grip on the rope. To take advantage of the effect, the MIT students had to make a device that could tightly grip a few turns of a rope while still rapidly advancing it.

The Atlas rope climber can be attached at any point along a rope–a rescue worker could get onto a line from a second-story window, for example. It takes about 10 seconds to wrap the rope three times around the capstan. The climbing device can’t shoot a rope up to the top of a building, but Ball says the army already uses grappling hooks to set ropes that soldiers must then climb by hand. A first wave of firefighters or other emergency workers might climb up using the stairs and set a rope for others to follow, or a soldier might be dropped to the top of a building from a helicopter and set a rope.

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.