We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Rewriting Life

A Fast, Sensitive Virus Detector

A sensor that measures the concentration of viruses in minutes could make possible a handheld device that cheaply and quickly spots pathogens.

Researchers at the University of Twente, in the Netherlands, have developed an ultrasensitive sensor that could potentially be used in a handheld device to, within minutes, detect various viruses and measure their concentration. The sensor could be used to quickly screen people at hospitals and emergency clinics to control outbreaks of diseases such as SARS and the bird flu. All it would take is a tiny sample of saliva, blood, or other body fluid.

In a new virus-detecting sensor, waveguides in a silicon substrate split light into four parallel beams. The beams then form an interference pattern that changes when viruses bind to the antibodies placed on one of the light channels. Researchers at the University of Twente, in the Netherlands, made the device, which can detect low virus concentrations in minutes.

Currently available methods to detect viruses are also sensitive. But they require laborious preparation of the fluid sample and only give results after several days. Since viral diseases can spread rapidly, researchers are looking for easier, faster ways to directly detect viruses. “You want a tool on which you apply the [fluid] sample on-site and in a few minutes say whether or not the person has the SARS virus,” says Aurel Ymeti, a postdoctoral researcher in biophysical engineering and the sensor’s lead developer.

The researchers are now working with the Tiel, Netherlands-based company Paradocs Group BV to develop a commercial prototype of the sensor, which they describe online in a Nano Letters paper. The device uses a silicon substrate containing channels that guide laser light. Light enters into the substrate at one end and is split into four parallel beams. When these beams emerge at the other end, they spread out and overlap with one another, creating a pattern of bright and dark bands, known as an interference pattern, which the researchers record.

So far, the researchers have only tested the sensor for the herpes-simplex virus. On one of the four light-guiding channels, the researchers attach antibodies that bind to the virus. Then they slowly flow a saline solution of the virus along that channel. As the microbes attach to the antibodies, the interference pattern changes. The higher the concentration, the more the interference pattern shifts.

By measuring the change in the pattern for different virus concentrations, the researchers establish a fixed relationship between the two factors. Once this relationship is known, Ymeti says they can estimate the concentration of a new virus solution by analyzing the sensor’s response for a few minutes.

The researchers are also able to detect the virus in human serum, or blood plasma. This is typically harder to do than detecting the virus in a saline solution because serum contains many different proteins that can attach to the antibody and cause errors. So far, the sensor only detects the virus if its concentration in serum is high. To be useful, the improved prototype sensor should be able to accurately measure low concentrations in different body fluids.

While the sensor has only worked for the herpes virus, the researchers hope to soon demonstrate it for other viruses in order to make it widely applicable. To detect the SARS, HIV, or bird-flu virus, the researchers would have to attach antibodies specific to those viruses on the light channel. By attaching different antibodies on different light channels, the same sensor could detect multiple diseases.

Detecting various viruses with this device shouldn’t be a major hurdle, says David Gottfried, a biosensor researcher at the Georgia Tech Research Institute. Until now, no one has demonstrated a fast, portable sensor that can be used to detect viral diseases on-site. “This is one of the first demonstrations of a biosensor technique that could be [practical] for viruses, and it has the sensitivity required for early detection,” Gottfried says.

Ymeti says that the goal is to have a small microfluidics device that can test for different diseases simultaneously. He expects such a prototype to be ready within the next two years.

Be the leader your company needs. Implement ethical AI.
Join us at EmTech Digital 2019.

Register now
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.