Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Rewriting Life

The Brain Injury Epidemic

There are still no treatments for traumatic brain injury, though Barclay Morrison offers cause for hope.

Every year traumatic brain injury (TBI) causes 50,000 deaths and 80,000 cases of long-term disability in the United States, according to the Centers for Disease Control and Prevention. An estimated 5.3 million Americans (some 2 percent of the population) live with long-term disabilities due to brain injury.

Yet much about brain injuries remains unknown. Despite decades of research, no treatments yet target the underlying pathophysio­logical cause of progressive brain damage. For patients so severely injured that they are in a minimally conscious state, medical knowledge is particularly lacking; in such cases, we are just beginning to understand the damage and the possibility of treatment (see “Raising Consciousness”).

This story is part of our January/February 2007 Issue
See the rest of the issue
Subscribe

Preventing brain injuries is enormously important. Prevention strategies include such commonsense devices as air bags in cars, protective helmets, and cushioned playground materials. Detailed knowledge of TBI biomechanics at both the whole-body and single-cell levels can make prevention even more successful. Equipped with this information, computational models can predict how likely an event is to cause injury and how effective a protective device is likely to be.

Finding treatments for those injuries that do occur will depend on better understanding the complex cellular events triggered by a brain injury. In TBI, a rapid mechanical deformation of the brain both physically disrupts and mechanically stimulates cells. Some cell damage is immediate, but most of the damage develops over days, weeks, and even months. The delayed and progressive nature of the neurodegenerative cascade represents a critical therapeutic opportunity: targeted intervention could halt the progression of cell damage and death. However, no therapeutic strategies yet exist that target the degeneration mechanisms.

One approach, which my research group is working on, is to develop experimental TBI models that simulate the neurodegenerative sequence. With the molecular understanding that such models offer, promising therapeutic targets can be identified and treatments rationally developed with the intent of breaking the progression from mechanical event to delayed cell death. Boosting the brain’s own protective mechanisms is another possible tactic. Finally, therapeutic strategies to encourage sprouting of new brain tissue or regeneration of damaged tissue could also hold promise for those living with long-term disability.

Our understanding of TBI is greater today than it has ever been. But TBI must continue to be studied so that effective treatments can be found for the approximately 230,000 people each year who suffer head injuries that require hospitalization.

Barclay Morrison is an assistant professor of biomedical engineering at Columbia University and the principal investigator in its Neuro­trauma and Repair Laboratory.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.