Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

From the Labs: Information Technology

New publications, experiments and breakthroughs in information technology–and what they mean.

Resilient Robots
Self-aware machines are able to assess injuries and make adjustments

The four-legged robot shown here can, by monitoring its own structure, tell if it has damaged or lost a limb and adapt its gait accordingly.

Source: “Resilient Machines through Continuous Self-Modeling”
Josh Bongard et al.
Science 314: 1118-1121

This story is part of our January/February 2007 Issue
See the rest of the issue
Subscribe

Results: By constantly monitoring its own structure, a four-legged robot built by Josh Bongard, a professor of computer science at the University of Vermont, and colleagues at Cornell University can tell if it has damaged or lost a limb and adapt its gait accordingly.

Why it matters: Robots are useful for exploring environments that are too harsh for humans–unless they suffer damage and can’t compensate for it. Previous recovery schemes for damaged robots relied on built-in redundancy such as extra limbs, or preprogrammed contingency plans that anticipated certain failures. ­Bongard designed a robot that constantly and autonomously monitors itself, adjusting to damage like joint separation or disappearance of a limb. His approach could make robots more useful in harsh environments.

Methods: The robot is equipped with sensors and actuators that collect information about the relative position of its parts. Based on the sensor data, the robot’s onboard computer creates mathematical models of the state of its body. If one of the robot’s limbs is damaged, data from the sensors can be used to generate a new model. A separate algorithm runs simulations of possible gaits, searching for the most efficient one for the damaged robot. The process usually takes about eight hours.

Next steps: Bongard plans to apply his algorithms to a collection of robots. Drawing on the experiences of others in a group could speed up an individual robot’s recovery rate. A damaged robot would send out a query to the other robots in the group, essentially asking if they’d encountered the same injury and how they adjusted.

Spinning Light
A system combining a magnetic material and a semiconductor could lead to spintronic devices that pack more data into beams of light

Source: “Reconstruction Control of Magnetic Properties during Epitaxial Growth of Ferromagnetic Mn3-gGa on Wurtzite GaN(0001)”
Erdong Lu et al.
Physical Review Letters 97: 146101

Results: Arthur Smith, a professor of physics at Ohio University, and postdoc Erdong Lu have grown manganese gallium, a metal, on gallium nitride, a semiconductor commonly used to make blue lasers and light-emitting diodes. Smith and Lu believe that the new material could lead to room-­temperature lasers that exploit the spin of electrons (spintronics).

Why it matters: Lasers based on spintronics, rather than on conventional electronics, have the potential to increase bandwidth in optical networks. Currently, data is encoded as the frequency and phase characteristics of a beam of light. In a spintronic laser, however, electrons with a certain spin can create photons with a corresponding spin, resulting in polarized light. Using polarization to encode a light beam with data could increase the amount of information it can carry. But until now, researchers have lacked materials suitable for making spintronic lasers.

Methods: Using standard processes, Smith and Lu deposited a thin film of manganese gallium onto gallium nitride. Reflection high-energy electron diffraction revealed a smooth interface between the two materials–a necessity if electrons are to maintain their spin as they travel into the light-emitting semiconductor.

Next steps: Researchers must determine whether the spin characteristics of the electrons are indeed preserved. They must also test the material’s light-­emitting properties to determine how well the spin of electrons translates into polarized light.

Be the leader your company needs. Implement ethical AI.
Join us at EmTech Digital 2019.

Register now
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Print Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.