Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Rewriting Life

Regenerating Chicken Wings

A method to regrow damaged wings in chicken embryos could shed light on how to regenerate limbs in other species–including humans.

Salamanders and zebrafish can grow new limbs and fins, but chop off your own finger, and it’s not going to grow back. Now researchers in San Diego have been able to regenerate wings in chicken embryos, which can’t normally grow new limbs. The findings move scientists one step closer to understanding how to induce regenerative powers in humans.

“Regeneration likely involves a combination of factors,” says Stephen Badylak, a scientist at the McGowan Institute for Regenerative Medicine, in Pittsburgh, PA, who is not involved in the research. “If we can identify the key ones and put them together, we can probably induce regeneration.”

When a salamander loses a leg, specialized epithelial cells cover the wound, forming a multilayered structure. These cells then trigger the muscle, nerve, and connective-tissue cells below to dedifferentiate (essentially, lose the specialized characteristics that make them a neuron or muscle cell), divide, and form a ball of stem-cell-like cells. The ball of cells begins to develop the way a normal limb does, forming new muscle and bone to produce an entirely new limb.

While many animals have this capacity–within the animal kingdom, more species can regenerate limbs than cannot–mammals have largely lost it. For reasons not yet clear, they instead form scars when wounded. But many developmental biologists believe that if they can understand the regeneration process, they will be able to induce it in humans. The process could potentially repair damaged tissue, such as occurs in cardiac muscle after a heart attack, or even spur the growth of new limbs.

Researchers have now identified a genetic “on” switch that triggers regeneration at developmental stages when the animal normally lacks the capacity. Yasuhiko Kawakami and colleagues at the Salk Institute for Biological Studies, in La Jolla, CA, performed experiments in chickens and frogs in which they overactivated a set of genes, called the Wnt pathway, known to be involved in regular development and thought to be involved in regeneration. When the genes were turned on in chicken embryos that had had their developing wings removed, the action triggered the growth of a new limb. In frogs, which can regenerate limbs when they are tadpoles but not as adults, activating the genes extended the period of time that tadpoles could regenerate.

“We think that controlling activity of Wnt may have the potential for making tissue regenerate which normally does not regenerate,” says Kawakami, a developmental biologist who carried out the study with Juan Carlos Izpisua Belmonte, also at the Salk.


Kawakami cautions that both the timing and the duration of gene expression are crucial. If the genes were turned on for too long, abnormal limbs developed. And if the genes were expressed too late in development, new limbs were unable to grow.

Experts say the findings are exciting, but they caution that much remains to be done before new limbs can be grown in mammals. The studies took place in still-developing animals, whose cells are likely much more flexible when it comes to inducing regeneration, says Hans-Georg Simon, a developmental biologist at Northwestern University, in Chicago, who studies limb and heart regeneration. Even mammals, including humans, show some regenerative capabilities. Under some circumstances, children as old as five can grow a new fingertip if the wound is treated correctly. But that ability is lost as we age.

“This pathway is undoubtedly a critical one,” says Simon. “But other unknown factors are probably needed to reactivate adult, fully differentiated tissue to reconstruct a new structure.”

Badylak adds that regeneration in mammals will likely require inhibition of our normal immune response, which triggers inflammation at the site of a wound. None of the animals that can regenerate limbs show this type of immune response.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.

Subscribe today

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Premium {! insider.prices.premium !}*

    {! insider.display.menuOptionsLabel !}

    Our award winning magazine, unlimited access to our story archive, special discounts to MIT Technology Review Events, and exclusive content.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

    First Look: exclusive early access to important stories, before they’re available to anyone else

    Insider Conversations: listen in on in-depth calls between our editors and today’s thought leaders

  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus ad-free web experience, select discounts to partner offerings and MIT Technology Review events

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special discounts to select partner offerings

    Discount to MIT Technology Review events

    Ad-free web experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly magazine delivery and unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.