Rewriting Life

Neuron on a Chip

Tiny changes in the way electrical signals move through neurons are the basis of learning and memory–and of many brain pathologies. But it has been difficult for neuroscientists to observe these changes in much detail. Now, researchers at Harvard University have created a tool with unmatched sensitivity: silicon nanowires that amplify very small electrical signals from as many as 50 places on a single neuron. Existing methods can pick up signals from only one or two places.

Fifty nanoscale devices on a chip measure electrical signals traveling along a single neuron. (Credit: Lieber Group, Harvard)

Chemist Charles Lieber and coworkers assemble nano­wires on a silicon chip, deposit electrical leads that connect to them, and add protein molecules that promote and control neuron growth. Finally, they seed the chip with rat neurons and wait four to ten days for them to grow. The proteins provide a path for the neuron’s growth along the chip, ensuring that it makes contact with the nanowires. The technology could eventually help brain scientists understand the underpinnings of learning, memory, and disease.

Tech Obsessive?
Become an Insider to get the story behind the story — and before anyone else.
Subscribe today

Uh oh–you've read all five of your free articles for this month.

Insider Premium

$179.95/yr US PRICE

More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Basic.

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning magazine and daily delivery of The Download, our newsletter of what’s important in technology and innovation.

    See details+

    What's Included

    Bimonthly home delivery and unlimited 24/7 access to MIT Technology Review’s website.

    The Download. Our daily newsletter of what's important in technology and innovation.

You've read of free articles this month.