Wireless Wonder Chip

HP’s tiny chip could offer a new way for storing and sharing video, audio, and pictures.

Hewlett-Packard’s announcement earlier this week that it’s working on a miniscule wireless chip, called Memory Spot, has prompted some experts to speculate that the device could revolutionize how digital information is stored and shared. The chip – which is half the size of a grain of rice – can hold up to four megabits of information, enough for minutes of audio, short video clips, or hundreds of pages of text.

This tiny wireless chip is capable of storing audio, video, pictures, and text. When attached to or imbedded in paper, it can add more media options to photos, postcards, and other documents. (Courtesy of Hewlett-Packard)

Because it’s so small, and potentially cheap, HP’s chip can be either attached to or embedded in various objects, including paper, says Howard Taub, vice president of research at HP. For instance, by using a device called a reader to extract the information stored on the chip, Memory Spot could provide an audio clip for a photo, a revision history of a paper document, or supplementary video footage to explain a complex topic in a text book. It has the ability to “make paper or a document more dynamic,” he says.

Additionally, the chip could be beneficial in the health-care and pharmaceutical industries, for example, in hospital wristbands to hold a patient’s medical history and keep track of doctors’ notes and the patient’s progress, potentially reducing errors. Also, if encoded with information and attached to a bottle of pills, it could verify a drug’s authenticity, as well as provide instructions and information about side effects and harmful interactions.

Although Memory Spot is currently a research project and HP does not yet have plans to commercialize it, the chip could eventually be sold for $1 or less, according to Taub, and Memory Spot readers could be available on cell phones, PDAs, and printers.

HP’s chip is based on technology called a radio-frequency identification device, or RFID, which consists of a small chip and a wireless antenna. RFID tags are used in merchandising as a replacement for bar codes. Although much RFID research has been aimed at increasing the range of the readers so that tags can be read from more than 20 feet away, the HP researchers tried to solve a different problem. The group wanted to know how it could “store more on the smallest chip,” says Taub.

Memory Spot and traditional RFID share a couple of features: both contain data and wirelessly transmit it, and both can operate without a battery. HP’s chip and some types of RFIDs harvest energy from a reader when it comes within range. When an electrical current on the RFID reader comes near the RFID antenna, it causes current to flow in the circuitry of the tag or chip, allowing stored data to be accessed.

But conventional battery-free RFIDs can hold only a few kilobits of information, useful for storing a product code, for instance, but not much else. Also, this data can usually be programmed into the tag’s memory just once. In contrast, Memory Spot can hold up to four megabits of data in Flash memory, and information can be written, deleted, and rewritten to its memory many times.

The most technically challenging aspect of the Memory Spot project, explains Taub, was to integrate all of the components – an antenna, a modem, memory, and a processor – onto a chip less than a millimeter wide. All the components are placed in a specific configuration to keep the antenna from interfering with circuitry in the rest of the device.

Part of the reason this high capacity is possible, explains Taub, is the wireless frequency used to transmit data to and from a tag via the Memory Spot reader. The chip’s antenna and reader operate at the 2.45 gigahertz frequency band, which is used in Wi-Fi, while most RFID tags use 13.56 megahertz. By operating in Wi-Fi range, significantly more bandwidth is available to send data from chip to reader, resulting in transmission rates of 10 megabits per second, much faster than traditional RFID. Data transfer speed is a crucial feature because “people wouldn’t want to wait around for a couple of seconds while the reader is reading the chip,” he says.

Additionally, how data is transmitted is an important consideration, says John Waters, a researcher at HP Labs in Bristol, U.K. who worked on the project. “We have specifically designed a scheme that…requires a minimum amount of circuitry in the chip to function,” he says.

The HP announcement is another step in the evolution of wireless, ubiquitous computing, says Lionel Lavallee, senior RFID solution architect at Intel. Looking back at the types of RFID available a few years ago, the devices were fairly distinct, he says, and could be broken into a few categories: passive RFIDs that use power from the reader and hold only a small amount of data; active RFIDs that have more computing power and memory, but also use batteries that have a limited lifetime; and battery-powered sensors that collect information from the environment. “Now you’re seeing a continuum of all the technologies bleeding together,” he says. “You get this cross pollination that grabs the best bits of both worlds.”

Lavallee predicts that RFID will finally start to become widely adopted in businesses in the next 12 months. “Right now we’re at a tipping point,” he says. Standard RFID technology will start to become commonplace, showing up in hospitals to track patients and treatments, in pharmaceuticals to prevent counterfeiting, and increasingly on products to replace bar codes.

And Memory Spot could add another set of applications to wireless chips because of its much greater memory capacity and battery-free longevity. Still, HP’s chip will not completely replace traditional RFID, suggests Taub, since it’s more expensive than conventional RFID tags, which can cost less than 10 cents each. Additionally, not all applications – for example, authenticating a shipment of flip-flops for Wal-Mart – would need so much memory.

Nonetheless, the chip’s relatively large storage capacity makes it an ideal candidate for some wireless technology and applications. While it was conceived as a way to add audio to photographs, says Taub, he can envision attaching the chip to a postcard, to send pictures of vacations to family and friends, or being used in textbooks to create media-rich environments.

At this early stage, however, it’s not clear what applications Memory Spot will be best suited for, if it does make it out of the lab. “It’s hard to predict a killer app until it’s released in the marketplace,” says Rajit Gadh, professor of mechanical and aerospace engineering at UCLA and a specialist in RFID technology. But he’s encouraged by the capabilities of the HP chip and expects that one of its most exciting applications will be for storing and sharing digital media. “I think this is a very positive development for the field of RFID,” he says, “with the possibility of creating new markets, such as media streaming content over passive RFID.”

Uh oh–you've read all five of your free articles for this month.

Insider Online Only

$19.95/yr US PRICE


From the latest smartphones to advances in quantum computing, the hardware behind today's digital age is rapidly changing.

You've read of free articles this month.