Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Intelligent Machines

Between Human and Machine

Despite the successes of robotic exploration, there’s nothing quite like being there.

In the late 1980s, when I worked as an engineer at the Woods Hole Oceanographic Institution, robots were emerging as scientific tools for exploring the deep ocean. Since the 1960s, Woods Hole had operated a small submersible named Alvin, which could bring three people down to the seafloor, opening up new vistas in the deep ocean, from hydrothermal vents to the wreck of the Titanic.

In 1988, Woods Hole introduced the robot Jason, a remotely operated vehicle (or ROV) attached to a cable that could reach from the seafloor to the surface. Jason’s pilot and observers sat on a ship inside a darkened control room, staring at a wall of video monitors. Fiber optics in the cable made the images from the seafloor as crisp and colorful as the evening news. Megabits of data came up the pipe. Great pronouncements were made. Robots would be cheaper than manned submersibles and safer, too, saving humans from exposure to the crushing pressures of the deep.

But things did not turn out that way. The robots were not cheaper, and they were not safer. Because the ROV stayed down for days at a time (versus Alvin’s eight-to-five workday), it needed three full shifts of operators and scientists. And it would be hard to be safer than Alvin, which operated for 40 years and thousands of dives with no serious accidents. While Jason and its successor Jason II have together operated safely for 15 years, ROVs do bring new dangers. Handling a high-voltage cable immersed in salt water under thousands of pounds of tension while standing on the deck of a pitching, rolling ship could quickly ruin your day.

What the robot did offer was something nobody expected: it opened up the seafloor. With the ROV, the whole scientific team works on the seafloor together, in a real-time seminar complete with bathroom and coffee breaks.

Today we see a similar phenomenon in space, watching in awe as a pair of robotic rovers clamber around Mars, venturing into craters, drilling into rocks, capturing beautiful panoramas. The engineers and scientists at NASA’s Jet Propulsion Lab in Pasadena, CA, “live” on Mars, remotely, for months at a time. And millions of spectators can follow the action on the Internet.

So given the advantages that robots present, why are we proposing to send people to Mars? Why is the National Science Foundation about to build a new Alvin, with capabilities marginally better than those of the current one?

Ocean scientists propose a variety of reasons for continued human presence on the seafloor: depth perception is more accurate, the direct visual impressions of the human eye are sharper, and a user can work the manipulator arms more adeptly from inside a vehicle than remotely. Some of these advantages have already yielded to technological change. Others will soon be conquered. The same occurs in space exploration: the argument for human presence evolves as technology changes.

But there’s something more at stake here: scientists’ image of themselves. Are they brave adventurers, risking all in pursuit of knowledge, or sober data analysts, poring over numbers and pictures from inside windowless laboratories? It’s helpful to distinguish between scientific data collection and exploration. Where scientists collect data to learn about the natural world, explorers expand the realm of human experience. Sometimes the two roles overlap, but not always. If we are doing science, we can measure our success by the amount of data collected, and insight gained, for a given cost. In a zero-sum game, the robots win. But policy matters: resources are often available for human exploration that are not available for science. Read President Bush’s speech launching the new moon/Mars initiative: you’ll find the word “exploration” 15 times. The word “science” appears only once.

I’ve worked on oceanographic projects, remotely “living” on the seafloor for weeks at a time. I’ve also dived in submersibles, and those days rank among the most exciting of my career. The issues arising in sea and space exploration mirror those in other disciplines, from medicine to war, as they evolve in response to virtual and remote technology. Are you a real oceanographer if you don’t descend to the seafloor? Are you a real explorer if you never set foot in a new world? How would we train a new, virtual explorer/scientist? What will she need to know? In endeavors whose utility is quantifiable, machines usually come out well. But if we seek to expand human experience, we’ve got to be there.

David A. Mindell, PhD ‘96, is the Frances and David Dibner Associate Professor of the History of Engineering and Manufacturing and associate professor of engineering systems.

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today
More from Intelligent Machines

Artificial intelligence and robots are transforming how we work and live.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.