Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Biotech Boost for Nanoelectronics

Proteins seen as a versatile platform for making tiny wires.

To keep getting faster, electronics must eventually shrink down to the nanoscale. But making wires and switches that small is no easy feat. Biological molecules, with their ability to self-assemble, offer one promising approach. In research done at the University of Chicago, scientists have engineered proteins to form cores for gold wires only 80 nanometers wide.

The researchers started with yeast prions-harmless cousins of the proteins that cause mad-cow disease. Under certain conditions, these prions spontaneously form highly stable fibrils. The team genetically engineered the fibrils to bind tightly to specially prepared gold nanoparticles. The result was fibrils dotted with gold blobs. To fill gaps between the blobs, the team added silver and then more gold, producing conducting wires. “One can imagine using them to build small-scale circuitry for computers, biosensors-there’s a whole world of things,” says geneticist Susan Lindquist, who collaborated on the project with physicist Heinrich Jaeger in Chicago and is now director of MIT’s Whitehead Institute for Biomedical Research. The work was described this spring in the Proceedings of the National Academy of Sciences.

The prions have advantages over other biological molecules that researchers have so far tried to use for nanoelectronics. Merging silver with DNA, for example, has allowed scientists to make nanowires, which, thanks to DNA’s ability to specifically bind to complementary sequences, can then form circuitlike patterns. But the weak bonds between DNA strands tend to break easily. This is less of a problem for protein fibrils. “We think that proteins offer a whole realm of different capabilities,” Lindquist says.  Indeed, creating self-assembling nanostructures from proteins “is a very exciting area,” says Chris Dobson, a structural biologist at the University of Cambridge in England. His lab is using protein fibrils to build electronic materials and optical materials for telecommunications.

This story is part of our June 2003 Issue
See the rest of the issue
Subscribe

In collaboration with MIT materials chemist Angela Belcher, Lindquist’s group is already extending the work. Belcher’s lab has developed proteins that can bind to about 30 different electronic, magnetic, and optical materials, and then assemble the materials into structures. The goal is to integrate Belcher’s proteins into Lindquist’s self-assembly system to create a way to “grow” materials-such as semiconductors-where and in whatever patterns the researchers want. Though it’s impossible to predict how long it might take for the new techniques to make their way into industrial use, the research is setting a firm foundation for practical nanotechnology.

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today
Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.