Skip to Content

Simulating Surgery

Software aims for safer bypass operations.
March 1, 2003

Vascular surgeons plan most arterial bypass grafts on the basis of experience and intuition: only after surgery is there a way to tell whether an artery has been grafted to the place best suited to restore blood flow with minimal complications. But a group led by Charles Taylor, a Stanford University mechanical engineer who studies the human vascular system, is proving the power of an experimental software system that lets surgeons “sketch” several possibilities and preview the likely results before making a single incision.

The process starts with the collection of three-dimensional nuclear magnetic resonance data that describe the patient’s anatomy-the exact shape of the coronary or carotid arteries, for instance-along with snapshots of blood flow at various points. Taylor’s software converts the anatomical data into a numerical “mesh” that represents the vessels, and surgeons use computer-aided design to add hypothetical bypass grafts to the mesh. Next, a supercomputer applies fluid dynamics equations to the original flow data, producing a color-coded simulation of blood coursing through the newly configured mesh. By using the simulations to test a variety of graft placements, surgeons can plan operations that don’t inadvertently create areas of low blood flow, a cause of clotting that can lead to heart attacks and strokes.

In retrospective comparisons of data from two human patients who received bypasses in their lower extremities, the system’s suggested predictions “probably would have changed how the procedures were performed,” says Taylor, who hopes that within five years he’ll have made the simulations fast and reliable enough for regular use in surgical planning. He says that “10 or 20 years from now every single [cardiovascular] patient is going to be treated this way.”

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.