Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not a subscriber? Subscribe now for unlimited access to online articles.

Wafer Whoppers

Microchip manufacturers etch their chips, more than 100 at a time, on large, round silicon wafers. The bigger the wafer, the greater the number of chips-and the lower the per-chip cost. The problem is that silicon crystals-from which wafers are harvested-cannot be grown to diameters larger than about 30 centimeters without being riddled with defects. Now, Juergen Werner and his colleagues at the University of Stuttgart, Germany, have found a way to get large wafers by joining smaller ones. They lay two wafers side by side and crystallize silicon vapor between their edges to close the gap. In early work, Werner connected two one-by-three-centimeter wafers; the technique should work to seal together larger wafers as well. The same method should also work with germanium-whose crystal growth is limited to 15 centimeters-to produce large wafers for more efficient solar cells and electronic displays.

Want more award-winning journalism? Subscribe to Print + All Access Digital.
  • Print + All Access Digital {! insider.prices.print_digital !}*

    {! insider.display.menuOptionsLabel !}

    The best of MIT Technology Review in print and online, plus unlimited access to our online archive, an ad-free web experience, discounts to MIT Technology Review events, and The Download delivered to your email in-box each weekday.

    See details+

    12-month subscription

    Unlimited access to all our daily online news and feature stories

    6 bi-monthly issues of print + digital magazine

    10% discount to MIT Technology Review events

    Access to entire PDF magazine archive dating back to 1899

    Ad-free website experience

    The Download: newsletter delivered daily

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.