Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Rewriting Life

Mass Solution

A cheap, portable malaria test is creating a buzz among epidemiologists.

Existing antibody-based tests for infectious diseases such as malaria are fairly cheap, but even a dollar per test can be prohibitively expensive if the target population comprises millions of people in the world’s poorest countries. Now a better screening tool is coming to the fore: mass spectrometry, a common chemistry tool that precisely identifies molecules on the basis of their atomic weight. A portable machine built at Johns Hopkins University is more sensitive than antibody-based tests, covers all four kinds of malaria, and costs very little to operate.

That could make it a perfect tool for initial malaria screening of large populations, says Andrew Feldman, the physicist who developed the test at the Johns Hopkins University Applied Physics Laboratory in Laurel, MD. “My guess is we are going to be the gold standard for that kind of screening analysis,” says Feldman, who is planning clinical trials. He found that a malarial by-product known as heme-an iron-containing molecule thrown off by the malaria-causing Plasmodium parasite as it “eats” hemoglobin-has a clear signature, which a mass spectrometer can recognize easily.

Unfortunately, although it is cheap to operate, the briefcase-size, 13-kilogram instrument currently costs about its weight in gold. Johns Hopkins has created a startup, Matrix Instrument, to manufacture it, but Feldman estimates that even produced in quantity, each unit would would tip the scales at $25,000. That sum, however hefty, might still be affordable for a mass-screening project.

This story is part of our February 2003 Issue
See the rest of the issue
Subscribe

Malarial screening is just one likely use for the new diagnostic tool. Using mass spectrometry, “you can detect many, many things with one instrument,” says physical chemist Wayne Bryden, leader of the Johns Hopkins project that built the machine. Doctors who use the instrument don’t even need to know what they are looking for; everything weighs something. Bryden hopes the malaria application will be the first step toward an all-purpose diagnostic device for hospital and health clinic settings-not to mention military applications such as sensing chemical- and biological-warfare agents.

Get stories like this before anyone else with First Look.

Subscribe today
Already a Premium subscriber? Log in.

Uh oh–you've read all of your free articles for this month.

Insider Premium
$179.95/yr US PRICE

More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    What's Included

    Unlimited 24/7 access to MIT Technology Review’s website

    The Download: our daily newsletter of what's important in technology and innovation

    Bimonthly print magazine (6 issues per year)

    Bimonthly digital/PDF edition

    Access to the magazine PDF archive—thousands of articles going back to 1899 at your fingertips

    Special interest publications

    Discount to MIT Technology Review events

    Special discounts to select partner offerings

    Ad-free web experience

/
You've read all of your free articles this month. This is your last free article this month. You've read of free articles this month. or  for unlimited online access.