Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

Rewriting Life

Precision Brain Scans

High-tech imaging takes the guesswork out of diagnosis.

The main skill in diagnosing neurological disorders such as multiple sclerosis and Alzheimer’s disease: educated guesswork. Indeed, today’s doctors rely primarily on interviews, physical examination and laboratory tests to detect these complex neurological diseases; the problem is that symptoms can vary dramatically from one patient to the next, making diagnosis tricky and subjective. But by combining new databases with improved medical-imaging techniques able to resolve telltale anatomical features a millimeter in size or less, researchers are starting to make the invisible visible, potentially enabling them to offer patients earlier and more accurate diagnoses.

At the State University of New York at Buffalo, for example, researchers have developed software that renders three-dimensional pictures of the brain from magnetic-resonance imaging data, allowing them to digitally parcel off areas of the brain and precisely calculate their size and volume. Rohit Bakshi, director of the Buffalo Neuroimaging Analysis Center, has used the technology to show that the caudate nucleus-a part of the brain’s gray matter involved in motor control and thinking-is significantly smaller in multiple-sclerosis patients than in healthy patients (see image). Through such software tools, Bakshi hopes to standardize the way neurologists analyze MRIs. “Today, two clinicians can look at the same MRI and see it differently,” says Bakshi. “We’re working on making MRI a quantitative and standardized test, like a blood test, where you get a specific, reliable value back, and you can accurately compare the results to normal people.”

Besides aiding diagnosis, the new techniques could help track the course of a disease-and the benefits of treatments. Bruce Rosen, director of the Martinos Center for Biomedical Imaging at the Massachusetts General Hospital in Boston, and his colleagues are already using MRI machines to measure the thickness of brain structures only one-tenth to two-tenths of a millimeter in size. “That means we could see changes in the brain in response to a drug that occur in three to six months instead of assessing memory improvements, which tend to evolve over 12 to 18 months,” says Rosen.

This story is part of our October 2002 Issue
See the rest of the issue
Subscribe

To help standardize the diagnosis process, Bakshi’s center is developing a large database of brain scans taken from multiple sites across the state of New York. With more than a thousand images already in stock, he and his colleagues are building software that correlates scans of multiple-sclerosis patients with data about the courses the disease takes with them, to identify variations and predict whether patients will recover or develop chronic illness. A consortium of U.S. universities, which includes Rosen’s imaging center, started work this year on a similar database network containing brain scans of Alzheimer’s patients from across the country. The $20 million project will connect databases at hospitals and universities in California, North Carolina and Massachusetts. “Ultimately, our hope is that when somebody comes in and we take a brain scan, we can make a diagnosis, stratify their disease and determine what treatments would be most effective,” says Rosen.

“Databases like these are definitely the future,” says Robert Knowlton, a neurologist at the University of Alabama at Birmingham Hospital. Better classifications of brain diseases, he says, will ultimately lead to better treatments.

Become an MIT Technology Review Insider for in-depth analysis and unparalleled perspective.

Subscribe today
More from Rewriting Life

Reprogramming our bodies to make us healthier.

Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Print Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.