We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

A Chip with Ears


Crack open a cell phone and you’ll find that, while most of the circuitry has been shrunk down and integrated onto silicon chips, the microphone is still a separate device about the size of a watch battery. A Danish electronics manufacturing consortium, Sound Holding, hopes to bring microphones into the computer age, carving them from silicon using the same techniques that make today’s transistors so small and precise.

Materials scientist Matthias Mllenborn and his team at Sound Holding create the sound-sensing component of the microphone by etching a rectangular hollow beneath a silicon chip’s surface, leaving a 500-nanometer-thick membrane of silicon on top. Sound waves hitting the membrane cause it to vibrate, generating an electrical signal that travels to an adjacent chip for processing. The team cuts manufacturing costs by using a commercially available processing chip and gluing it side by side with the sound sensor on a bigger slice of silicon. The whole package is five cubic millimeters, one-tenth the size of a cell phone microphone.

Engineers have been working on silicon microphones for almost a decade, but manufacturing difficulties have hurt the devices’ performance, preventing them from reaching the market. Sound Holding’s manufacturing method should solve that problem, but observers are not sure it will be a commercial home run. “If only performance and size counts, Sound Holding’s approach is good,” says Robert Aigner, an electrical engineer at Munich, Germany’s Infineon Technologies, which also develops silicon microphones. “The challenge will be to compete with the low prices of conventional microphones.” Sound Holding is pushing ahead, though. The consortium is equipping cell phones with prototypes and plans to start commercial production in 2003.

This story is part of our March 2002 Issue
See the rest of the issue

Thanks to automated production techniques, silicon microphones should be incredibly uniform-and outperform existing microphones, Mllenborn says. Their precision could also allow for arrays of sensors capable of determining where sounds are coming from to reduce background noise in cell phone conversations. Eventually, the minute microphones could help in everything from making hearing aids more sensitive and streamlined to monitoring the sounds of aircraft engines.

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insider? Log in.
Want more award-winning journalism? Subscribe to Insider Plus.
  • Insider Plus {! insider.prices.plus !}*

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.