Skip to Content

Magnetically Levitated Trains

How a maglev train works.

The future of transportation may find travelers flying on vehicles that have no wings. Magnetically levitated trains, which use the attracting and repelling forces of magnets, jet through the air just millimeters off a specialized track-some at speeds of 550 kilometers per hour. Maglevs are quieter and consume less energy than trains with wheels that touch the track.

The city of Shanghai, China, is building a high-speed German maglev dubbed Transrapid, which will whisk people the 33 kilometers between downtown Shanghai and Pudong International Airport. And by 2004, the U.S. Department of Transportation will fund a $950 million project to build a maglev train either between Baltimore and Washington or between Pittsburgh International Airport and downtown Pittsburgh.

The Transrapid train is propelled, guided and levitated by magnetic forces. Frames attached to the bottom of the train curve down around a T-shaped guideway; electromagnetic levitation magnets attached to the frames are attracted upward to magnetic rails on the guideway’s underside, lifting the train up about 15 centimeters. An alternating current passing through the guideway creates an electromagnetic field that travels down the rails. The magnets on the frames are attracted to this traveling field, which pulls the train forward in much the same way that a refrigerator magnet moved underneath paper pulls a second magnet across the top. To slow the train down, the traveling field is made to move in the reverse direction. Sensors monitor the distance between the magnets and the guideway, and a computer regulates the strength of the current sent to the magnets to keep the gap at a constant 10 millimeters. Guidance magnets and sensors located along the sides of the frames work to keep the vehicle centered above the guideway.

Another maglev system, being developed in Japan, uses superconducting magnets to levitate and propel a train and takes advantage of both attractive and repulsive forces. The magnets are situated along the sides of the train and along the inside of a U-shaped guideway. The vehicle rolls on rubber tires until it reaches 100 kilometers per hour. An electric current then creates two opposing magnetic fields that lift the train 10 centimeters above the guideway. The array of magnets along the sides pulls and pushes the train along. Both trains provide a smooth, quiet, frictionless ride unmatched even by air flight-even though the train is literally flying above the ground.

Got a new technology you’d like to see explained in Visualize? Send your ideas to visualize@technologyreview.com.

Keep Reading

Most Popular

Large language models can do jaw-dropping things. But nobody knows exactly why.

And that's a problem. Figuring it out is one of the biggest scientific puzzles of our time and a crucial step towards controlling more powerful future models.

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are often sold as a transition to EVs, but new data from Europe shows we’re still underestimating the emissions they produce.

How scientists traced a mysterious covid case back to six toilets

When wastewater surveillance turns into a hunt for a single infected individual, the ethics get tricky.

Google DeepMind’s new generative model makes Super Mario–like games from scratch

Genie learns how to control games by watching hours and hours of video. It could help train next-gen robots too.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.