Hello,

We noticed you're browsing in private or incognito mode.

To continue reading this article, please exit incognito mode or log in.

Not an Insider? Subscribe now for unlimited access to online articles.

OEwaves

Light-wave timekeeper for faster networks.

Oscillators are at the heart of every communications device, from FM radio receivers to cell phones to sophisticated optical networking equipment. By beating out a reference signal like the ticking of a clock, they allow such gadgets to interpret and process incoming signals. But in today’s oscillators the frequency of the signal is set by a vibrating quartz crystal, and quartz just isn’t fast enough for the transmitters and other machines that drive optical networks. Enter OEwaves, a Pasadena, CA, startup that’s using technology from Caltech to build a better, faster oscillator-one that keeps time, not with vibration, but with light.

In a conventional oscillator, an electric current causes the quartz to vibrate at a natural frequency of about five million cycles per second, or five megahertz. But optical networks currently operate at frequencies of up to 10 gigahertz-2,000 times as fast-and could eventually reach 40 gigahertz. Special equipment can multiply the natural frequency of quartz up to the rate of the network, but the process adds both cost to the system and noise to the signal. OEwaves’ “opto-electronic oscillator” would solve both problems by using light to create a reference signal-tuned to any frequency required. To accomplish this, the device uses a tiny sphere of glass. Laser light beamed into the sphere is trapped, perpetually glancing off the walls; the frequency of this trapped light wave-which can be altered by adjusting the laser beam or the size of the microsphere-becomes the reference oscillation. “It’s the first new approach to oscillator technology for 30 years,” says OEwaves cofounder Lute Maleki. “It will reduce the cost and the complexity of the system, and it also lets the network carry more information.”

Maleki, a physicist at Caltech’s Jet Propulsion Laboratory, and OEwaves cofounder Steve Yao first tried to build the optical oscillator using a length of fiber-optic cable to trap the light. The idea of using microspheres came from Vladimir Ilchenko, then at Moscow’s Lebedev Institute and soon to be OEwaves’ chief scientist. With CEO Julie Schoenfeld, Maleki and Yao founded OEwaves last year, raising an initial $4.4 million. The company plans to have a working oscillator the size of a small circuit board by the first quarter of 2002. This device will be small enough to use in optical network transmitters, OEwaves’ first target application.

As in most new ventures, there are still many technological hurdles to overcome. A nearly identical project at the National Institute of Standards and Technology, for example, was tabled in 1999 when researchers found that minor variations in temperature would distort the signal. “As the temperature changes, it will actually change the shape of the material,” says John Kitching, who worked on the oscillator project. “Then the frequency will drift around. Because of that instability, it didn’t seem like it was worth pursuing.”

Maleki points out that, like his own early efforts, the national lab’s project used fiber-optic cable. He argues that the move to microspheres will solve the temperature problem. If OEwaves succeeds in meeting these and the other challenges it will undoubtedly face, its persistence could pay off handsomely. CEO Schoenfeld claims that a high-performance, high-frequency oscillator will have applications in markets ranging from optical networks to high-bandwidth fixed wireless networks and beyond. If she’s right, OEwaves’ timing may be just about perfect.

Want to go ad free? No ad blockers needed.

Become an Insider
Already an Insider? Log in.
Want more award-winning journalism? Subscribe and become an Insider.
  • Insider Plus {! insider.prices.plus !}* Best Value

    {! insider.display.menuOptionsLabel !}

    Everything included in Insider Basic, plus the digital magazine, extensive archive, ad-free web experience, and discounts to partner offerings and MIT Technology Review events.

    See details+

    Print + Digital Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

    Technology Review PDF magazine archive, including articles, images, and covers dating back to 1899

    10% Discount to MIT Technology Review events and MIT Press

    Ad-free website experience

  • Insider Basic {! insider.prices.basic !}*

    {! insider.display.menuOptionsLabel !}

    Six issues of our award winning print magazine, unlimited online access plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Print Magazine (6 bi-monthly issues)

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

  • Insider Online Only {! insider.prices.online !}*

    {! insider.display.menuOptionsLabel !}

    Unlimited online access including articles and video, plus The Download with the top tech stories delivered daily to your inbox.

    See details+

    Unlimited online access including all articles, multimedia, and more

    The Download newsletter with top tech stories delivered daily to your inbox

/3
You've read of three free articles this month. for unlimited online access. You've read of three free articles this month. for unlimited online access. This is your last free article this month. for unlimited online access. You've read all your free articles this month. for unlimited online access. You've read of three free articles this month. for more, or for unlimited online access. for two more free articles, or for unlimited online access.